On a multistage discrete stochastic optimization problem with stochastic constraints and nested sampling

Abstract

We consider a multistage stochastic discrete program in which constraints on any stage might involve expectations that cannot be computed easily and are approximated by simulation. We study a sample average approximation (SAA) approach that uses nested sampling, in which at each stage, a number of scenarios are examined and a number of simulation replications are performed for each scenario to estimate the next-stage constraints. This approach provides an approximate solution to the multistage problem. To establish the consistency of the SAA approach, we first consider a two-stage problem and show that in the second-stage problem, given a scenario, the optimal values and solutions of the SAA converge to those of the true problem with probability one when the sample sizes go to infinity. These convergence results do not hold uniformly over all possible scenarios for the second stage problem. We are nevertheless able to prove that the optimal values and solutions of the SAA converge to the true ones with probability one when the sample sizes at both stages increase to infinity. We also prove exponential convergence of the probability of a large deviation for the optimal value of the SAA, the true value of an optimal solution of the SAA, and the probability that any optimal solution to the SAA is an optimal solution of the true problem. All of these results can be extended to a multistage setting and we explain how to do it. Our framework and SAA results cover a large variety of resource allocation problems for which at each stage after the first one, new information becomes available and the allocation can be readjusted, under constraints that involve expectations estimated by Monte Carlo. As an illustration, we apply this SAA method to a staffing problem in a call center, in which the goal is to optimize the numbers of agents of each type under some constraints on the quality of service (QoS). The staffing allocation has to be decided under an uncertain arrival rate with a prior distribution in the first stage, and can be adjusted at some additional cost when better information on the arrival rate becomes available in later stages.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. 1.

    Ahmed, S., Shapiro, A.: Solving chance-constrained stochastic programs via sampling and integer programming. In: Tutorials in Operations Research, INFORMS, pp 261–269 (2008)

  2. 2.

    Atlason, J., Epelman, M.A., Henderson, S.G.: Call center staffing with simulation and cutting plane methods. Ann. Oper. Res. 127, 333–358 (2004)

    MathSciNet  MATH  Article  Google Scholar 

  3. 3.

    Atlason, J., Epelman, M.A., Henderson, S.G.: Optimizing call center staffing using simulation and analytic center cutting plane methods. Manag. Sci. 54(2), 295–309 (2008)

    MATH  Article  Google Scholar 

  4. 4.

    Avramidis, A.N., Deslauriers, A., L’Ecuyer, P.: Modeling daily arrivals to a telephone call center. Manag. Sci. 50(7), 896–908 (2004)

    MATH  Article  Google Scholar 

  5. 5.

    Avramidis, A.N., Chan, W., Gendreau, M., L’Ecuyer, P., Pisacane, O.: Optimizing daily agent scheduling in a multiskill call centers. Euro. J. Oper. Res. 200(3), 822–832 (2010)

    MATH  Article  Google Scholar 

  6. 6.

    Bassamboo, A., Harrison, J.M., Zeevi, A.: Design and control of a large call center: Asymptotic analysis of an LP-based method. Oper. Res. 54(3), 419–435 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Bastin, F., Cirillo, C., Toint, PhL: Convergence theory for nonconvex stochastic programming with an application to mixed logit. Math. Program. Ser. B 108(2–3), 207–234 (2006)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. II, 4th edn. Athena Scientific, Belmont, Mass (2012)

  9. 9.

    Bertsekas, D.P.: Dynamic Programming and Optimal Control, vol. I, 4th edn. Athena Scientific, Belmont, Mass (2017)

  10. 10.

    Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming, 2nd edn. Springer, New York (2011)

    Google Scholar 

  11. 11.

    Buist, E., L’Ecuyer, P.: A Java library for simulating contact centers. In: Kuhl ME, Steiger NM, Armstrong FB, Joines JA (eds) Proceedings of the 2005 Winter Simulation Conference, IEEE Press, pp 556–565 (2005)

  12. 12.

    Buist, E., L’Ecuyer, P.: ContactCenters: A Java Library for Simulating Contact Centers. Software user’s guide, available at http://simul.iro.umontreal.ca/contactcenters (2012)

  13. 13.

    Cez̧ik MT, L’Ecuyer P, : Staffing multiskill call centers via linear programming and simulation. Manag. Sci. 54(2), 310–323 (2008)

  14. 14.

    Chan, W., Ta T.A., L’Ecuyer, P., Bastin, F.: Chance-constrained staffing with recourse for multi-skill call centers with arrival-rate uncertainty. In: Proceedings of the 2014 Winter Simulation Conference, IEEE Press, pp 4103–4104 (2014)

  15. 15.

    Chan, W., Ta, T.A., L’Ecuyer, P., Bastin, F.: Two-stage chance-constrained staffing with agent recourse for multi-skill call centers. In: Proceedings of the 2016 Winter Simulation Conference, IEEE Press, Piscataway, NJ, USA, pp 3189–3200 (2016)

  16. 16.

    Dai, L., Chen, C.H., Birge, J.R.: Convergence properties of two-stage stochastic programming. J. Optim. Theory Appl. 106(3), 489–509 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Defraeye, M., Van Nieuwenhuyse, I.: Staffing and scheduling under nonstationary demand for service: A literature review. Omega 58, 4–25 (2016). https://doi.org/10.1016/j.omega.2015.04.002

    Article  MATH  Google Scholar 

  18. 18.

    Dempster, M.A.H., Fisher, M.L., Jansen, L., Lageweg, B.J., Lenstra, J.K., Rinnooy Kan, A.H.G.: Analytical evaluation of hierarchical planning systems. Oper. Res. 29(4), 707–716 (1981)

    MATH  Article  Google Scholar 

  19. 19.

    Dupačová, J., Wets, R.: Asymptotic behavior of statistical estimators and of optimal solutions of stochastic optimization problems. Ann. Stat. pp 1517–1549 (1988)

  20. 20.

    Dussault, J.P., Labrecque, D., L’Ecuyer, P., Rubinstein, R.: Combining the stochastic counterpart and stochastic approximation methods. Discrete Event Dyn. Syst. Theory Appl. 7(1), 5–28 (1997)

    MATH  Article  Google Scholar 

  21. 21.

    Gans, N., Koole, G., Mandelbaum, A.: Telephone call centers: tutorial, review, and research prospects. Manuf. Serv. Oper. Manag. 5, 79–141 (2003)

    Article  Google Scholar 

  22. 22.

    Gans, N., Shen, H., Zhou, Y.P., Korolev, N., McCord, A., Ristock, H.: Parametric forecasting and stochastic programming models for call-center workforce scheduling. Manuf. Serv. Oper. Manag. 17(4), 571–588 (2015)

    Article  Google Scholar 

  23. 23.

    Gurvich, I., Luedtke, J., Tezcan, T.: Staffing call centers with uncertain demand forecasts: A chance-constrained optimization approach. Manag. Sci. 56(7), 1093–1115 (2010)

    MATH  Article  Google Scholar 

  24. 24.

    Haneveld, W.K.K., van der Vlerk, M.H.: Optimizing electricity distribution using two-stage integer recourse models. In: Stochastic optimization: Algorithms and applications, Springer, pp 137–154 (2001)

  25. 25.

    Harrison, J.M., Zeevi, A.: A method for staffing large call centers based on stochastic fluid models. Manuf. Serv. Oper. Manag. 7(1), 20–36 (2005)

    Article  Google Scholar 

  26. 26.

    Helber, S., Henken, K.: Profit-oriented shift scheduling of inbound contact centers with skills-based routing, impatient customers, and retrials. OR Spectr. 32, 109–134 (2010)

    MATH  Article  Google Scholar 

  27. 27.

    Hoeffding, W.: Probability inequalities for sums of bounded random variables. J. Am. Stat. Assoc. 58, 13–29 (1963)

    MathSciNet  MATH  Article  Google Scholar 

  28. 28.

    Ibrahim, R., L’Ecuyer, P., Régnard, N., Shen, H.: On the modeling and forecasting of call center arrivals. In: Laroque C, Himmelspach J, Pasupathy R, Rose O, Uhrmacher AM (eds) Proceedings of the 2012 Winter Simulation Conference, IEEE Press, pp 256–267 (2012)

  29. 29.

    Ibrahim, R., Ye, H., L’Ecuyer, P., Shen, H.: Modeling and forecasting call center arrivals: a literature study and a case study. Int. J. Forecast. 32(3), 865–874 (2016)

    Article  Google Scholar 

  30. 30.

    Jaoua, A., L’Ecuyer, P., Delorme, L.: Call type dependence in multiskill call centers. Simulation 89(6), 722–734 (2013)

    Article  Google Scholar 

  31. 31.

    Jouini, O., Koole, G., Roubos, A.: Performance indicators for call centers with impatient customers. IIE Trans. 45(3), 341–354 (2013)

    Article  Google Scholar 

  32. 32.

    Kaniovski, Y.M., King, A.J., Wets, R.J.B.: Probabilistic bounds (via large deviations) for the solutions of stochastic programming problems. Ann. Oper. Res. 56(1), 189–208 (1995)

    MathSciNet  MATH  Article  Google Scholar 

  33. 33.

    Kim, K., Mehrotra, S.: A two-stage stochastic integer programming approach to integrated staffing and scheduling with application to nurse management. Oper. Res. 63(6), 1431–1451 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  34. 34.

    Kim, S., Pasupathy, R., Henderson, S.G.: A guide to sample average approximation. In: Fu, M.C. (ed.) Handbook of Simulation Optimization, pp. 207–243. Springer, New York (2015)

    Google Scholar 

  35. 35.

    Kleywegt, A.J., Shapiro, A., Homem-de Mello, T.: The sample average approximation method for stochastic discrete optimization. SIAM J. Optim. 12(2), 479–502 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  36. 36.

    Koole, G.: Call Center Optimization. MG books, Amsterdam (2013)

    Google Scholar 

  37. 37.

    Kushner, H.J., Clark, D.S.: Stochastic Approximation Methods for Constrained and Unconstrained Systems, Applied Mathematical Sciences, vol. 26. Springer, Berlin (1978)

    Google Scholar 

  38. 38.

    Lan, G., Zhou, Z.: Algorithms for stochastic optimization with function or expectation constraints. Comput. Optim. Appl. 76, 461–498 (2020). https://doi.org/10.1007/s10589-020-00179-x

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Laporte, G., Louveaux, F., Mercure, H.: The vehicle routing problem with stochastic travel times. Trans. sci. 26(3), 161–170 (1992)

    MATH  Article  Google Scholar 

  40. 40.

    L’Ecuyer, P., Yin, G.: Budget-dependent convergence rate for stochastic approximation. SIAM J. Optim. 8(1), 217–247 (1998)

    MathSciNet  MATH  Article  Google Scholar 

  41. 41.

    L’Ecuyer, P., Meliani, L., Vaucher, J.: SSJ: A framework for stochastic simulation in Java. In: Yücesan E, Chen CH, Snowdon JL, Charnes JM (eds) Proceedings of the 2002 Winter Simulation Conference, IEEE Press, pp 234–242 (2002)

  42. 42.

    L’Ecuyer, P., Gustavsson, K., Olsson, L.: Modeling bursts in the arrival process to an emergency call center. In: Proceedings of the 2018 Winter Simulation Conference, IEEE Press, pp 525–536 (2018)

  43. 43.

    Liao, S., van Delft, C., Koole, G., Jouini, O.: Staffing a call center with uncertain non-stationary arrival rate and flexibility. OR Spectr. 34, 691–721 (2012)

    MathSciNet  MATH  Article  Google Scholar 

  44. 44.

    Liao, S., van Delft, C., Vial, J.P.: Distributionally robust workforce scheduling in call centers with uncertain arrival rates. Optim. Methods Softw. 28(3), 501–522 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  45. 45.

    Matteson, D.S., McLean, M.W., Woodard, D.B., Henderson, S.G.: Forecasting emergency medical service call arrival rates. Ann. Appl. Stat. 5(2B), 1379–1406 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  46. 46.

    Mehrotra, V., Ozlük, O., Saltzman, R.: Intelligent procedures for intra-day updating of call center agent schedules. Prod. Oper. Manag. 19(3), 353–367 (2010)

    Article  Google Scholar 

  47. 47.

    Nedic, A., Bertsekas, D.P.: Incremental subgradient methods for nondifferentiable optimization. SIAM J. Optim. 12(1), 109–138 (2001)

    MathSciNet  MATH  Article  Google Scholar 

  48. 48.

    Nemirovski, A., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19(4), 1574–1609 (2009)

    MathSciNet  MATH  Article  Google Scholar 

  49. 49.

    Oreshkin, B., Régnard, N., L’Ecuyer, P.: Rate-based daily arrival process models with application to call centers. Oper. Res. 64(2), 510–527 (2016)

    MATH  Article  Google Scholar 

  50. 50.

    Pichitlamken, J., Deslauriers, A., L’Ecuyer, P., Avramidis, A.N.: Modeling and simulation of a telephone call center. In: Proceedings of the 2003 Winter Simulation Conference, IEEE Press, pp 1805–1812 (2003)

  51. 51.

    Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L.: A review of dynamic vehicle routing problems. Euro. J. Oper. Res. 225(1), 1–11 (2013)

    MathSciNet  MATH  Article  Google Scholar 

  52. 52.

    Polyak, B.T., Juditsky, A.B.: Acceleration of stochastic approximation by averaging. SIAM J. Control Optim. 30(4), 838–855 (1992)

    MathSciNet  MATH  Article  Google Scholar 

  53. 53.

    Punnakitikashem, P., Rosenberger, J.M., Buckley-Behan, D.: Stochastic programming for nurse assignment. Comput. Optim. Appl. 40(3), 321–349 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  54. 54.

    Punnakitikashem, P., Rosenberber, J.M., Buckley-Behan, D.F.: A stochastic programming approach for integrated nurse staffing and assignment. IIE Trans. 45(10), 1059–1076 (2013)

    Article  Google Scholar 

  55. 55.

    Robbins, H., Monro, S.: A stochastic approximation method. Ann. Math. Stat. 22, 400–407 (1951)

    MathSciNet  MATH  Article  Google Scholar 

  56. 56.

    Robbins, T.R., Harrison, T.P.: A stochastic programming model for scheduling call centers with global service level agreements. Euro. J. Oper. Res. 207(3), 1608–1619 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  57. 57.

    Robinson, S.M.: Analysis of sample path optimization. Math. Oper. Res. 21, 513–528 (1996)

    MathSciNet  MATH  Article  Google Scholar 

  58. 58.

    Rubinstein, R.Y., Shapiro, A.: Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method. Wiley, New York (1993)

    Google Scholar 

  59. 59.

    Ruszczyński, A., Syski, W.: On convergence of the stochastic subgradient method with on-line stepsize rules. J. Math. Anal. Appl. 114(2), 512–527 (1986)

    MathSciNet  MATH  Article  Google Scholar 

  60. 60.

    Shapiro, A.: Asymptotic behavior of optimal solutions in stochastic programming. Math. Oper. Res. 18(4), 829–845 (1993)

    MathSciNet  MATH  Article  Google Scholar 

  61. 61.

    Shapiro, A.: Monte Carlo sampling methods. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming, pp. 353–425. Handbooks in Operations Research and Management Science, Elsevier, Amsterdam (2003). chapter 6

    Google Scholar 

  62. 62.

    Shapiro, A., de Mello, T.H.: On rate of convergence of Monte Carlo approximations of stochastic programs. SIAM J. Optim. 11(1), 70–86 (2000)

    MathSciNet  MATH  Article  Google Scholar 

  63. 63.

    Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lecture Notes on Stochastic Programming: Modeling and Theory, 2nd edn. Handbooks in Operations Research and Management Science, SIAM, Philadelphia (2014)

  64. 64.

    Stroock, D.W.: An introduction to the theory of large deviations. Springer, New York (1984)

    Google Scholar 

  65. 65.

    Ta, T.A., L’Ecuyer, P., Bastin, F.: Staffing optimization with chance constraints for emergency call centers. In: MOSIM 2016–11th International Conference on Modeling, Optimization and Simulation, see http://www.iro.umontreal.ca/~lecuyer/myftp/papers/mosim16emergency.pdf (2016)

  66. 66.

    Ta, T.A., Chan, W., Bastin, F., L’Ecuyer, P.: A simulation-based decomposition approach for two-stage staffing optimization in call centers under arrival rate uncertainty. Submitted for publication (2019)

  67. 67.

    Vogel, S.: A stochastic approach to stability in stochastic programming. J. Comput. Appl. Math. 56, 65–96 (1994)

    MathSciNet  MATH  Article  Google Scholar 

  68. 68.

    Wang, W., Ahmed, S.: Sample average approximation of expected value constrained stochastic programs. Oper. Res. Lett. 36, 515–519 (2008)

    MathSciNet  MATH  Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by a Canada Research Chair, an Inria International Chair, and a Hydro-Québec research Grant to P. L’Ecuyer, by NSERC Discovery Grants to F. Bastin and P. L’Ecuyer, and by scholarships from the CIRRELT, DIRO and Université de Montréal to T.A. Ta.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Fabian Bastin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ta, T.A., Mai, T., Bastin, F. et al. On a multistage discrete stochastic optimization problem with stochastic constraints and nested sampling. Math. Program. (2020). https://doi.org/10.1007/s10107-020-01518-w

Download citation

Keywords

  • Sample average approximation
  • Multistage stochastic program
  • Expected value constraints
  • Convergence rate
  • Staffing optimization

Mathematics Subject Classification

  • 65C05
  • 90C15