Skip to main content

Advertisement

Log in

Generalized conditioning based approaches to computing confidence intervals for solutions to stochastic variational inequalities

  • Full Length Paper
  • Series B
  • Published:
Mathematical Programming Submit manuscript

Abstract

Stochastic variational inequalities (SVI) provide a unified framework for the study of a general class of nonlinear optimization and Nash-type equilibrium problems with uncertain model data. Often the true solution to an SVI cannot be found directly and must be approximated. This paper considers the use of a sample average approximation (SAA), and proposes a new method to compute confidence intervals for individual components of the true SVI solution based on the asymptotic distribution of SAA solutions. We estimate the asymptotic distribution based on one SAA solution instead of generating multiple SAA solutions, and can handle inequality constraints without requiring the strict complementarity condition in the standard nonlinear programming setting. The method in this paper uses the confidence regions to guide the selection of a single piece of a piecewise linear function that governs the asymptotic distribution of SAA solutions, and does not rely on convergence rates of the SAA solutions in probability. It also provides options to control the computation procedure and investigate effects of certain key estimates on the intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Agdeppa, R.P., Yamashita, N., Fukushima, M.: Convex expected residual models for stochastic affine variational inequality problems and its application to the traffic equilibrium problem. Pac. J. Optim. 6(1), 3–19 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Anitescu, M., Petra, C.: Higher-order confidence intervals for stochastic programming using bootstrapping. Technical Report ANL/MCS-P1964-1011, Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL (2011)

  3. Attouch, H., Cominetti, R., Teboulle, M.: Forward: Special issue on nonlinear convex optimization and variational inequalities. Math. Program. 116(1–2), 1–3 (2009). https://doi.org/10.1007/s10107-007-0116-6

    Article  MathSciNet  Google Scholar 

  4. Chen, X., Fukushima, M.: Expected residual minimization method for stochastic linear complementarity problems. Math. Oper. Res. 30, 1022–1038 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, X., Pong, T.K., Wets, R.J.B.: Two-stage stochastic variational inequalities: an ERM-solution procedure (2015) (preprint)

  6. Chen, X., Wets, R.J.B., Zhang, Y.: Stochastic variational inequalities: residual minimization smoothing sample average approximations. SIAM J. Optim. 22(2), 649–673 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, X., Zhang, C., Fukushima, M.: Robust solution of monotone stochastic linear complementarity problems. Math. Program. 117, 51–80 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dentcheva, D., Römisch, W.: Differential stability of two-stage stochastic programs. SIAM J. Optim. 11(1), 87–112 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dontchev, A.L., Rockafellar, R.T.: Characterizations of strong regularity for variational inequalities over polyhedral convex sets. SIAM J. Optim. 6(4), 1087–1105 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dupacova, J., Wets, R.: Asymptotic behavior of statistical estimators and of optimal solutions of stochastic optimization problems. Ann. Stat. 16(4), 1517–1549 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. I. Springer, New York (2003)

    MATH  Google Scholar 

  12. Fang, H., Chen, X., Fukushima, M.: Stochastic R\(_0\) matrix linear complementarity problems. SIAM J. Optim. 18, 482–506 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ferris, M.C., Pang, J.S.: Complementarity and Variational Problems: State of the Art. SIAM, Philadelphia (1997)

    MATH  Google Scholar 

  14. Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Genz, A., Bretz, F.: Computation of Multivariate Normal and t Probabilities. Lecture Notes in Statistics. Springer, Heidelberg (2009)

    Book  MATH  Google Scholar 

  16. Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., Hothorn, T.: mvtnorm: multivariate normal and t distributions (2013). http://CRAN.R-project.org/package=mvtnorm. R package version 0.9-9996

  17. Giannessi, F., Maugeri, A. (eds.): Variational Inequalities and Network Equilibrium Problems. Plenum Press, New York (1995)

    MATH  Google Scholar 

  18. Giannessi, F., Maugeri, A., Pardalos, P.M. (eds.): Equilibrium Problems: Nonsmooth Optimization and Variational Inequality Models. Nonconvex optimization and its applications, vol. 58. Kluwer Academic Publishers, Dordrecht (2001)

    MATH  Google Scholar 

  19. Gürkan, G., Pang, J.S.: Approximations of Nash equilibria. Math. Program. 117(1–2), 223–253 (2009). https://doi.org/10.1007/10107-007-0156-y

    Article  MathSciNet  MATH  Google Scholar 

  20. Gürkan, G., Yonca Özge, A., Robinson, S.M.: Sample-path solution of stochastic variational inequalities. Math. Program. 84, 313–333 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Harker, P.T., Pang, J.S.: Finite-dimensional variational inequality and nonlinear complementarity problems: a survey of theory, algorithms, and applications. Math. Program. 48, 161–220 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. Haurie, A., Zaccour, G., Legrand, J., Smeers, Y.: A stochastic dynamic nash-cournot model for the European gas market. Technical Report G-87-24, École des hautes études commerciales, Montréal, Québec, Canada (1987)

  23. Huber, P.: The behavior of maximum likelihood estimates under nonstandard conditions. In: LeCam L., Neyman J. (eds.) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics, pp. 221–233. University of California Press, Berkeley, CA (1967)

  24. Jiang, H., Xu, H.: Stochastic approximation approaches to the stochastic variational inequality problem. IEEE Trans. Autom. Control 53(6), 1462–1475 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. King, A.J., Rockafellar, R.T.: Asymptotic theory for solutions in statistical estimation and stochastic programming. Math. Oper. Res. 18, 148–162 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lamm, M., Lu, S., Budhiraja, A.: Individual confidence intervals for true solutions to expected value formulations stochastic variational inequalities. Math. Prog. Ser. B 165(1), 151–196 (2017)

    Article  MATH  Google Scholar 

  27. Lan, G., Nemirovski, A., Shapiro, A.: Validation analysis of mirror descent stochastic approximation method. Math. Program. 134(2), 425–458 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Linderoth, J., Shapiro, A., Wright, S.: The empirical behavior of sampling methods for stochastic programming. Ann. Oper. Res. 142, 215–241 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lu, S.: A new method to build confidence regions for solutions of stochastic variational inequalities. Optimization 63(9), 1431–1443 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lu, S.: Symmetric confidence regions and confidence intervals for normal map formulations of stochastic variational inequalities. SIAM J. Optim. 24(3), 1458–1484 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lu, S., Budhiraja, A.: Confidence regions for stochastic variational inequalities. Math. Oper. Res. 38, 545–568 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lu, S., Liu, Y., Yin, L., Zhang, K.: Confidence intervals and retions for the lasso by using stochastic variational inequality techniques in optimization. J. R. Stat. Soc. Ser. B 79(2), 589–611 (2017)

    Article  MathSciNet  Google Scholar 

  33. Luo, M., Lin, G.: Expected residual minimization method for stochastic variational inequality problems. J. Optim. Theory Appl. 140, 103–116 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Pang, J.: Newton’s method for B-differentiable equations. Math. Oper. Res. 15, 311–341 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  35. Pang, J.S., Ralph, D.: Forward: Special issue on nonlinear programming, variational inequalities, and stochastic programming. Math. Program. 117(1–2), 1–4 (2009). https://doi.org/10.1007/s10107-007-0169-6

    Article  MathSciNet  Google Scholar 

  36. Phelps, C., Royset, J.O., Gong, Q.: Optimal control of uncertain systems using sample average approximations. SIAM J. Control Optim. 54(1), 1–29 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Ralph, D.: On branching numbers of normal manifolds. Nonlinear Anal. Theory Methods Appl. 22, 1041–1050 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  38. Robinson, S.M.: Strongly regular generalized equations. Math. Oper. Res. 5(1), 43–62 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  39. Robinson, S.M.: An implicit-function theorem for a class of nonsmooth functions. Math. Oper. Res. 16(2), 292–309 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  40. Robinson, S.M.: Normal maps induced by linear transformations. Math. Oper. Res. 17(3), 691–714 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  41. Robinson, S.M.: Sensitivity analysis of variational inequalities by normal-map techniques. In: Giannessi, F., Maugeri, A. (eds.) Variational Inequalities and Network Equilibrium Problems, pp. 257–269. Plenum Press, New York (1995)

    Chapter  Google Scholar 

  42. Rockafellar, R.T., Wets, R.J.B.: Stochastic variational inequalities: single-stage to multistage. Math. Program. Ser. B 165(1), 331–360 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Römisch, W.: Stability of stochastic programming problems. In: Ruszczyński, A., Shapiro, A. (eds.) Handbooks in Operations Research and Management Science, vol. 10, pp. 483–554. Elsevier, Amsterdam (2003)

    Google Scholar 

  44. Scholtes, S.: Introduction to Piecewise Differentiable Equations. Springer, New York (2012)

    Book  MATH  Google Scholar 

  45. Shapiro, A.: Asymptotic behavior of optimal solutions in stochastic programming. Math. Oper. Res. 18, 829–845 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shapiro, A., Dentcheva, D., Ruszczyński, A.P.: Lectures on Stochastic Programming: Modeling and Theory. Society for Industrial and Applied Mathematics and Mathematical Programming Society, Philadelphia, PA (2009)

  47. Shapiro, A., Homem-de Mello, T.: On the rate of convergence of optimal solutions of monte carlo approximations of stochastic programs. SIAM J. Optim. 11(1), 70–86 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  48. Shapiro, A., Xu, H.: Stochastic mathematical programs with equilibrium constraints, modeling and sample average approximation. Optimization 57, 395–418 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Stefanski, L.A., Boos, D.D.: The calculus of M-estimation. Am. Stat. 56(1), 29–38 (2002)

    Article  MathSciNet  Google Scholar 

  50. Vogel, S.: Universal confidence sets for solutions of optimization problems. SIAM J. Optim. 19(3), 1467–1488 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Wald, A.: Note on the consitency of the maximum likelihood estimate. Ann. Math. Stat. 20, 595–601 (1949)

    Article  MATH  Google Scholar 

  52. Xu, H.: Sample average approximation methods for a class of stochastic variational inequality problems. Asia Pac. J. Oper. Res. 27(1), 103–119 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Yin, L., Lu, S., Liu, Y.: Confidence intervals for sparse penalized regression with random designs (2015) (submitted for publication)

  54. Zhang, C., Chen, X., Sumlee, A.: Robust Wardrop’s user equilibrium assignment under stochastic demand and supply. Transp. Res. B 45(3), 534–552 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

Research of Michael Lamm and Shu Lu is supported by National Science Foundation under the Grants DMS-1109099 and DMS-1407241. Research of Michael Lamm took place during his graduate study in the Department of Statistics and Operations at the University of North Carolina at Chapel Hill. We thank the three anonymous referees for comments and suggestions that have helped to improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Lamm.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamm, M., Lu, S. Generalized conditioning based approaches to computing confidence intervals for solutions to stochastic variational inequalities. Math. Program. 174, 99–127 (2019). https://doi.org/10.1007/s10107-018-1279-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-018-1279-z

Mathematics Subject Classification

Navigation