Mathematical Programming

, Volume 169, Issue 1, pp 255–275 | Cite as

Solving the degree-concentrated fault-tolerant spanning subgraph problem by DC programming

  • Chenchen Wu
  • Yishui Wang
  • Zaixin Lu
  • Panos M. Pardalos
  • Dachuan Xu
  • Zhao Zhang
  • Ding-Zhu Du
Full Length Paper Series B


In this paper, we consider the maximum and minimum versions of degree-concentrated fault-tolerant spanning subgraph problem which has many applications in network communications. We prove that both this two problems are NP-hard. For the maximum version, we use DC programming relaxation to propose a heuristic algorithm. Numerical tests indicate that the proposed algorithm is efficient and effective. For the minimum version, we also formulate it as a DC program, and show that the DC algorithm does not perform well for this problem.


Fault-tolerant Connectivity DC programming Convex function 

Mathematics Subject Classification

90C27 90C26 



The first author was partially supported by NSFC (No. 11501412). The fourth author was partially supported by the Paul and Heidi Brown Preeminent Professorship at ISE, University of Florida. The fifth author was partially supported by NSFC (No. 11531014). The sixth author was partially supported by NSFC (Nos. 61222201 and 11531011).


  1. 1.
    Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, New York (2008)CrossRefzbMATHGoogle Scholar
  2. 2.
    Boros, E., Borys, K., Elbassioni, K., Gurvich, V., Makino, K., Rudolf, G.: Generating minimal \(k\)-vertex connected spanning subgraphs. In: Proceedings of the 13th International Computing and Combinatorics Conference, pp. 222–231 (2007)Google Scholar
  3. 3.
    Byrka, J., Grandoni, F., Rothvoss, T., Sanitá, L.: Steiner tree approximation via iterative randomized rounding. J. ACM 60(1), 6 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chakraborty, T., Chuzhoy, J., Khanna, S.: Network design for vertex connectivity. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 167–176 (2008)Google Scholar
  5. 5.
    Cornaz, D., Magnouche, Y.: On minimal two-edge-connected graphs. In: Proceedings of 2014 International Conference on Control, Decision and Information Technologies, pp. 251–256 (2014)Google Scholar
  6. 6.
    Coulbourn, C.J.: The Combinatorics of Network Reliability. Oxford University Press, Oxford (1987)Google Scholar
  7. 7.
    Dinh, T.N., Xuan, Y., Thai, M.T., Pardalos, P.M., Znati, T.: On new approaches of assessing network vulnerability: hardness and approximation. IEEE ACM Trans. Netw. 20, 609–619 (2011)CrossRefGoogle Scholar
  8. 8.
    Frank, A.: Increasing the rooted-connectivity of a digraph by one. Math. Program. Ser. B 84, 565–576 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability—A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  10. 10.
    Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Khuller, S.: Approximation algorithms for finding highly connected subgraphs. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-Hard Problems, pp. 236–265. PWS Publishing Company, Boston, MA (1997)Google Scholar
  12. 12.
    Kobayashi, Y.: The complexity of maximizing the difference of two matorid rank functions. METR2014-42, University of Tokyo (2014)Google Scholar
  13. 13.
    Kortsarz, G., Nutov, Z.: Chapter 58: Approximating minimum cost connectivity problems. In: Gonzalez, T.F. (ed.) Handbook on Approximation Algorithms and Metaheuristics. Chapman Hall, Santa Barbara (2007)Google Scholar
  14. 14.
    Le Thi, H.A.: An efficient algorithm for globally minimizing a quadratic function under convex quadratic constraints. Math. Program. Ser. A 87, 401–426 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Le Thi, H.A., Pham Dinh, T.: Solving a class of linearly constrained indefinite quadratic problems by D.C. algorithms. J. Glob. Optim. 11, 253–285 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Le Thi, H.A., Pham Dinh, T.: The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133, 23–46 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Le Thi, H.A., Pham Dinh, T., Yen, N.D.: Properties of two DC algorithms in quadratic programming. J. Glob. Optim. 49, 481–495 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Le Thi, H.A., Pham Dinh, T., Ngai, H.V.: Exact penalty and error bounds in DC programming. J. Glob. Optim. 52, 509–535 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. Math. Program. 46, 259–271 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Li, S.: A 1.488 approximation algorithm for the uncapacitated facility location problem. Inf. Comput. 222, 45–58 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Maehara, T., Marumo, N., Murota, K.: Continuous relaxation for discrete DC programming. In: Proceedings of the 3rd International Conference on Modelling, Computation and Optimization in Information Systems and Management Sciences, pp. 181–190 (2015)Google Scholar
  22. 22.
    Maehara, T., Murota, K.: A framework of discrete DC programming by discrete convex analysis. Math. Program. Ser. A 152, 435–466 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Murota, K.: Discrete Convex Analysis. Society for Industrial and Applied Mathematics, Philadelphia (2003)CrossRefzbMATHGoogle Scholar
  24. 24.
    Pham Dinh, T., Souad, E.B.: Algorithms for solving a class of nonconvex optimization problems: methods of subgradients. In: Hiriart-Urruty, J.B. (ed.) Fermat Days 85: Mathematics for Optimization, North-Holland Mathematics Studies, vol. 129, pp. 249–271. North-Holland, Amsterdam (1986)CrossRefGoogle Scholar
  25. 25.
    Pham Dinh, T., Canh, N.N., Le Thi, H.A.: An efficient combined DCA and B&B using DC/SDP relaxation for globally solving binary quadratic programs. J. Glob. Optim. 48, 595–632 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Strekalovsky, A.S.: On local search in D.C. optimization problems. Appl. Math. Comput. 255, 73–83 (2015)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Tanenbaum, A.S.: Computer Networks, 5th edn. Prentice Hall, Upper Saddle River (2010)zbMATHGoogle Scholar
  28. 28.
    Tao, P.D., An, L.T.E.: Convex analysis approach to D.C. programming: theory, algorithm and applications. Acta Math. Vietnam. 22(1), 289–355 (1997)MathSciNetGoogle Scholar
  29. 29.
    Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1, 146–160 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cambridge University Press, Cambridge (2011)CrossRefzbMATHGoogle Scholar
  31. 31.
    Xu, J.M.: Combinatorial Theory in Networks. Academic Press, Cambridge (2013)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2018

Authors and Affiliations

  • Chenchen Wu
    • 1
  • Yishui Wang
    • 2
  • Zaixin Lu
    • 3
  • Panos M. Pardalos
    • 4
  • Dachuan Xu
    • 5
  • Zhao Zhang
    • 6
  • Ding-Zhu Du
    • 7
  1. 1.College of ScienceTianjin University of TechnologyXiqing District, TianjinPeople’s Republic of China
  2. 2.Department of Information and Operations Research, College of Applied SciencesBeijing University of TechnologyBeijingPeople’s Republic of China
  3. 3.School of Engineering and Computer ScienceWashington State UniversityVancouverUSA
  4. 4.Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA
  5. 5.Beijing Institute for Scientific and Engineering ComputingBeijing University of TechnologyBeijingPeople’s Republic of China
  6. 6.College of Mathematics Physics and Information EngineeringZhejiang Normal UniversityJinhuaPeople’s Republic of China
  7. 7.Department of Computer ScienceUniversity of Texa at DallasRichardsonUSA

Personalised recommendations