Skip to main content
Log in

Convexification of generalized network flow problem

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

This paper is concerned with the minimum-cost flow problem over an arbitrary flow network. In this problem, each node is associated with some possibly unknown injection and each line has two unknown flows at its ends that are related to each other via a nonlinear function. Moreover, all injections and flows must satisfy certain box constraints. This problem, named generalized network flow (GNF), is highly non-convex due to its nonlinear equality constraints. Under the assumption of monotonicity and convexity of the flow and cost functions, a convex relaxation is proposed, which is shown to always obtain globally optimal injections. This relaxation may fail to find optimal flows because the mapping from injections to flows is not unique in general. We show that the proposed relaxation, named convexified GNF (CGNF), obtains a globally optimal flow vector if the optimal injection vector is a Pareto point. More generally, the network can be decomposed into two subgraphs such that the lines between the subgraphs are congested at optimality and that CGNF finds correct optimal flows over all lines of one of these subgraphs. We also fully characterize the set of all globally optimal flow vectors, based on the optimal injection vector found via CGNF. In particular, we show that this solution set is a subset of the boundary of a convex set, and may include an exponential number of disconnected components. A primary application of this work is in optimization over electrical power networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Goldberg, A.V., Tardos, E., Tarjan, R.E.: Network flow algorithms. In: Korte, B., Lovasz, L., Promel, H.J., Schrijver, A. (eds.) Flows, Paths and VLSI, pp. 101–164. Springer, Berlin (1990)

  2. Jewell, W.S.: Optimal flow through networks with gains. Oper. Res. 10, 476–499 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Princeton (1962)

    MATH  Google Scholar 

  4. Klein, M.: A primal method for minimal cost flows with applications to the assignment and transportation problems. Manag. Sci. 14, 205–220 (1967)

    Article  MATH  Google Scholar 

  5. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall, Upper Saddle River (1993)

    MATH  Google Scholar 

  6. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Math. Program. 98, 49–71 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bertsimas, D., Stock-Paterson, S.: The traffic flow management rerouting problem in air traffic control: a dynamic network flow approach. Transp. Sci. 34, 239–255 (2000)

    Article  MATH  Google Scholar 

  8. Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows. Wiley, Hoboken, NJ (1990)

    MATH  Google Scholar 

  9. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19, 248–264 (1972)

    Article  MATH  Google Scholar 

  10. Nygard, K.E., Chandler, P.R., Pachter, M.: Dynamic network flow optimization models for air vehicle resource allocation. In: American Control Conference (2001)

  11. Goldfarb, D., Hao, J.: Polynomial-time primal simplex algorithms for the minimum cost network flow problem. Algorithmica 8, 145–160 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bienstock, D., Chopra, S., Gunluk, O., Tsai, C.Y.: Minimum cost capacity installation for multicommodity network flows. Math. Program. 81, 177–199 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Brannlund, H., Bubenko, J.A., Sjelvgren, D., Andersson, N.: Optimal short term operation planning of a large hydrothermal power system based on a nonlinear network flow concept. IEEE Trans. Power Syst. 1, 75–81 (1986)

    Article  Google Scholar 

  14. Goffin, J.L., Gondzio, J., Sarkissian, R., Vial, J.P.: Solving nonlinear multicommodity flow problems by the analytic center cutting plane method. Math. Program. 76, 131–154 (1996)

    MathSciNet  MATH  Google Scholar 

  15. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  16. Kraning, M., Chu, E., Lavaei, J., Boyd, S.: Dynamic network energy management via proximal message passing. Found. Trends Optim. 1(2), 1–54 (2013)

    Google Scholar 

  17. Araposthatis, A., Sastry, S., Varaiya, P.: Analysis of power-flow equation. Int. J. Electr. Power Energy Syst. 3, 115–126 (1981)

    Article  Google Scholar 

  18. Hiskens, I.A., Davy, R.J.: Exploring the power flow solution space boundary. IEEE Trans. Power Syst. 16(3), 389–395 (2001)

    Article  Google Scholar 

  19. Sojoudi, S., Lavaei, J.: Physics of power networks makes hard optimization problems easy to solve. In: IEEE Power & Energy Society General Meeting (2012)

  20. Carpentier, J.: Contribution to the economic dispatch problem. Bull. Soc. Fr. Electr. 3, 431–447 (1962)

    Google Scholar 

  21. Dommel, H.W., Tinney, W.F.: Optimal power flow solutions. IEEE Trans. Power Appar. Syst. 10, 1866–1876 (1968)

    Article  Google Scholar 

  22. Momoh, J.A., El-Hawary, M.E., Adapa, R.: A review of selected optimal power flow literature to 1993. Part I: nonlinear and quadratic programming approaches. IEEE Trans. Power Syst. 14, 96–104 (1999)

    Article  Google Scholar 

  23. Momoh, J.A., El-Hawary, M.E., Adapa, R.: A review of selected optimal power flow literature to 1993. Part II: Newton, linear programming and interior point methods. IEEE Trans. Power Syst. 14, 105–111 (1999)

    Article  Google Scholar 

  24. Overbye, T.J., Cheng, X., Sun, Y.: A comparison of the AC and DC power flow models for LMP calculations. In: Proceedings of the 37th Hawaii International Conference on System Sciences (2004)

  25. Baldick, R.: Applied Optimization: Formulation and Algorithms for Engineering Systems. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  26. Pandya, K.S., Joshi, S.K.: A survey of optimal power flow methods. J. Theor. Appl. Inf. Technol. 4, 450–458 (2008)

    Google Scholar 

  27. Jabr, R.A.: Optimal power flow using an extended conic quadratic formulation. IEEE Trans. Power Syst. 23(3), 1000–1008 (2008)

    Article  Google Scholar 

  28. Makarov, Y.V., Dong, Z.Y., Hill, D.J.: On convexity of power flow feasibility boundary. IEEE Trans. Power Syst. 23, 811–813 (2008)

    Article  Google Scholar 

  29. Lavaei, J., Low, S.H.: Zero duality gap in optimal power flow problem. IEEE Trans. Power Syst. 27(1), 92–107 (2012)

    Article  Google Scholar 

  30. Madani, R., Sojoudi, S., Lavaei, J.: Convex relaxation for optimal power flow problem: Mesh networks. IEEE Trans. Power Syst. 30(1), 199–211 (2015)

    Article  Google Scholar 

  31. Madani, R., Ashraphijuo, M., Lavaei, J.: Promises of conic relaxation for contingency-constrained optimal power flow problem. IEEE Trans. Power Syst. 31(2), 1297–1307 (2016)

    Article  Google Scholar 

  32. Sojoudi, S., Lavaei, J.: Exactness of semidefinite relaxations for nonlinear optimization problems with underlying graph structure. SIAM J. Optim. 24(4), 1746–1778 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lesieutre, B., Molzahn, D., Borden, A., DeMarco, C.L.: Examining the limits of the application of semidefinite programming to power flow problems. In: 49th Annual Allerton Conference (2011)

  34. Bose, S., Gayme, D.F., Low, S., Chandy, M.K.: Optimal power flow over tree networks. In: Proceedings of the Forty-Ninth Annual Allerton Conference (2011)

  35. Zhang, B., Tse, D.: Geometry of injection regions of power networks. IEEE Trans. Power Syst. 28(2), 788–797 (2013)

    Article  Google Scholar 

  36. Lavaei, J., Zhang, B., Tse, D.: Geometry of power flows in tree networks. In: IEEE Power & Energy Society General Meeting (2012)

  37. Lavaei, J., Tse, D., Zhang, B.: Geometry of power flows and optimization in distribution networks. IEEE Trans. Power Syst. 29(2), 572–583 (2014)

    Article  Google Scholar 

  38. Lavaei, J., Low, S.H.: Convexification of optimal power flow problem. In: 48th Annual Allerton Conference (2010)

  39. Lam, A.Y.S., Zhang, B., Dominguez-Garcia, A., Tse, D.: An optimal and distributed method for voltage regulation in power distribution systems. IEEE Trans. Power Syst. 30(4), 1714–1726 (2015)

    Article  Google Scholar 

  40. Gayme, D., Topcu, U.: Optimal power flow with large-scale storage integration. IEEE Trans. Power Syst. 28(2), 709–717 (2013)

    Article  Google Scholar 

  41. Weng, Y., Li, Q., Negi, R., Ilic, M.: Semidefinite programming for power system state estimation. In: IEEE Power & Energy Society General Meeting (2012)

  42. Madani, R., Lavaei, J., Baldick, R.: Convexification of power flow equations for power systems in presence of noisy measurements (2016). http://ieor.berkeley.edu/~lavaei/SE_J_2016.pdf

  43. Kekatos, V., Giannakis, G.B., Wollenberg, B.: Optimal placement of phasor measurement units via convex relaxation. IEEE Trans. Power Syst. 27(3), 1521–1530 (2012)

    Article  Google Scholar 

  44. Molzahn, D.K., Lesieutre, B.C., DeMarco, C.L.: A sufficient condition for power flow insolvability with applications to voltage stability margins. IEEE Trans. Power Syst. 28(3), 2592–2601 (2013)

    Article  Google Scholar 

  45. Sojoudi, S., Low, S.H.: Optimal charging of plug-in hybrid electric vehicles in smart grids. In: IEEE Power & Energy Society General Meeting (2011)

  46. Lavaei, J.: Zero duality gap for classical OPF problem convexifies fundamental nonlinear power problems. In: American Control Conference (2011)

  47. Lavaei, J., Sojoudi, S.: Competitive equilibria in electricity markets with nonlinearities. In: American Control Conference (2012)

  48. Hijazi, H., Coffrin, C., Hentenryck, P.V.: Convex quadratic relaxations for mixed-integer nonlinear programs in power systems. Mathematical Programming Computation, pp. 1–47 (2013)

  49. Kocuk, B., Dey, S.S., Sun, X.A.: Strong SOCP relaxations for the optimal power flow problem. Oper. Res. 64(6), 1177–1196 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Fattahi, S., Ashraphijuo, M., Lavaei, J., Atamturk, A.: Conic relaxations of the unit commitment problem. Energy 134, 1079–1095 (2017)

  51. O’Neill, R.P., Baldick, R., Helman, U., Rothkopf, M.H., Stewart, W.: Dispatchable transmission in rto markets. IEEE Trans. Power Syst. 20(1), 171–179 (2005)

    Article  Google Scholar 

  52. Josz, C., Maeght, J., Panciatici, P., Gilbert, J.C.: Application of the moment-SOS approach to global optimization of the OPF problem. IEEE Trans. Power Syst. 30(1), 463–470 (2015)

    Article  Google Scholar 

  53. Molzahn, D., Josz, C., Hiskens, I., Panciatici, P.: Solution of optimal power flow problems using moment relaxations augmented with objective function penalization. In: IEEE Conference on Decision and Control (CDC), pp. 31–38 (2015)

  54. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  55. Madani, R., Sojoudi, S., Fazelnia, G., Lavaei, J.: Finding low-rank solutions of sparse linear matrix inequalities using convex optimization. SIAM J. Optim. 27(2), 725–758 (2017)

  56. Sojoudi, S., Lavaei, J.: Convexification of optimal power flow problem by means of phase shifters. In: IEEE International Conference on Smart Grid Communications, pp. 756–761 (2013)

  57. Farivar, M., Low, S.H.: Branch flow model: relaxations and convexification—Part II. IEEE Trans. Power Syst. 28(3), 2565–2572 (2013)

    Article  Google Scholar 

  58. Low, S.H.: Convex relaxation of optimal power flow—Part I: formulations and equivalence. IEEE Trans. Control Netw. Syst. 1(1), 15–27 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  59. Low, S.H.: Convex relaxation of optimal power flow—Part II: exactness. IEEE Trans. Control Netw. Syst. 1(2), 177–189 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  60. Coffrin, C., Gordon, D., Scott, P.: NESTA, the NICTA Energy System Test Case Archive (2014). arXiv:1411.0359

  61. Lehmann, K., Grastien, A., Van Hentenryck, P.: AC-feasibility on tree networks is NP-hard. IEEE Trans. Power Syst. 31(1), 798–801 (2016)

    Article  Google Scholar 

  62. Bolognani, S., Zampieri, S.: On the existence and linear approximation of the power flow solution in power distribution networks. IEEE Trans. Power Syst. 31(1), 163–172 (2016)

    Article  Google Scholar 

  63. Dvijotham, K., Nguyen, H., Turitsyn, K.: Solvability regions of affinely parameterized quadratic equations. IEEE Control Syst. Lett. 2(1), 25–30 (2018)

    Article  Google Scholar 

  64. Nguyen, H.D., Dvijotham, K., Turitsyn, K.: Inner approximations of power flow feasibility sets (2017). arXiv:1708.06845

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Lavaei.

Additional information

This work was supported by DARPA YFA, ONR YIP Award, AFOSR YIP Award, NSF CAREER Award 1351279 and ONR N00014-17-1-2933. Parts of this work have appeared in the conference paper: Convex Analysis of Generalized Flow Networks, 54th IEEE Conference on Decision and Control, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sojoudi, S., Fattahi, S. & Lavaei, J. Convexification of generalized network flow problem. Math. Program. 173, 353–391 (2019). https://doi.org/10.1007/s10107-017-1223-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-017-1223-7

Keywords

Mathematics Subject Classification

Navigation