Advertisement

Mathematical Programming

, Volume 169, Issue 1, pp 69–94 | Cite as

DC decomposition of nonconvex polynomials with algebraic techniques

  • Amir Ali Ahmadi
  • Georgina Hall
Full Length Paper Series B
  • 296 Downloads

Abstract

We consider the problem of decomposing a multivariate polynomial as the difference of two convex polynomials. We introduce algebraic techniques which reduce this task to linear, second order cone, and semidefinite programming. This allows us to optimize over subsets of valid difference of convex decompositions (dcds) and find ones that speed up the convex–concave procedure. We prove, however, that optimizing over the entire set of dcds is NP-hard.

Keywords

Difference of convex programming Conic relaxations Polynomial optimization Algebraic decomposition of polynomials 

Mathematics Subject Classification

90C22 90C26 90C60 68Q25 

Notes

Acknowledgements

We would like to thank Pablo Parrilo for insightful discussions and Mirjam Dür for pointing out reference [9].

References

  1. 1.
    Ahmadi, A.A., Majumdar, A.: DSOS and SDSOS optimization: LP and SOCP-based alternatives to sum of squares optimization. In: Proceedings of the 48th Annual Conference on Information Sciences and Systems. Princeton University (2014)Google Scholar
  2. 2.
    Ahmadi, A.A., Majumdar, A.: DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization. In preparation (2017)Google Scholar
  3. 3.
    Ahmadi, A.A., Olshevsky, A., Parrilo, P.A., Tsitsiklis, J.N.: NP-hardness of deciding convexity of quartic polynomials and related problems. Math. Progr. 137(1–2), 453–476 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Ahmadi, A.A., Parrilo, P.A.: A convex polynomial that is not sos-convex. Math. Progr. 135(1–2), 275–292 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ahmadi, A.A., Parrilo, P.A.: A complete characterization of the gap between convexity and sos-convexity. SIAM J. Optim. 23(2), 811–833 (2013). Also arXiv:1111.4587
  6. 6.
    Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Progr. 95(1), 3–51 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Alvarado, A., Scutari, G., Pang, J.: A new decomposition method for multiuser dc-programming and its applications. Signal Process. IEEE Trans. 62(11), 2984–2998 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Argyriou, A., Hauser, R., Micchelli, C.A., Pontil, M.: A DC-programming algorithm for kernel selection. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 41–48. ACM (2006)Google Scholar
  9. 9.
    Bomze, I., Locatelli, M.: Undominated dc decompositions of quadratic functions and applications to branch-and-bound approaches. Comput. Optim. Appl. 28(2), 227–245 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chapelle, O., Do, C.B., Teo, C.H., Le, Q.V., Smola, A.J.: Tighter bounds for structured estimation. In: Advances in Neural Information Processing Systems, pp. 281–288 (2009)Google Scholar
  11. 11.
    de Klerk, E., Laurent, M.: On the Lasserre hierarchy of semidefinite programming relaxations of convex polynomial optimization problems (2010). http://www.optimization-online.org/DB-FILE/2010/11/2800.pdf
  12. 12.
    Dür, M.: A parametric characterization of local optimality. Math. Methods Oper. Res. 57(1), 101–109 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Floudas, C., Pardalos, P.: Optimization in Computational Chemistry and Molecular Biology: Local and Global Approaches, vol. 40. Springer, New York (2013)Google Scholar
  14. 14.
    Folland, G.: How to integrate a polynomial over a sphere. Am. Math. Month. 108(5), 446–448 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fung, G., Mangasarian, O.: Semi-supervised support vector machines for unlabeled data classification. Optim. Methods Softw. 15(1), 29–44 (2001)CrossRefzbMATHGoogle Scholar
  16. 16.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. W. H. Freeman and Co., San Francisco (1979)zbMATHGoogle Scholar
  17. 17.
    Gulpinar, N., Hoai An, L.T., Moeini, M.: Robust investment strategies with discrete asset choice constraints using DC programming. Optimization 59(1), 45–62 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hartman, P.: On functions representable as a difference of convex functions. Pac. J. Math 9(3), 707–713 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Helton, J.W., Nie, J.: Semidefinite representation of convex sets. Math. Progr. 122(1), 21–64 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Hilbert, D.: Über die Darstellung Definiter Formen als Summe von Formenquadraten. Math. Ann. 32, 342–350 (1888)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hillestad, R., Jacobsen, S.: Reverse convex programming. Appl. Math. Optim. 6(1), 63–78 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hiriart-Urruty, J.B.: Generalized differentiability, duality and optimization for problems dealing with differences of convex functions. In: Convexity and Duality in Optimization, pp. 37–70. Springer (1985)Google Scholar
  23. 23.
    Hoai An, L.T., Le, H.M., Tao, P.D., et al.: A DC programming approach for feature selection in support vector machines learning. Adv. Data Anal. Classif. 2(3), 259–278 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Hoai An, L.T., Tao, P.D.: Solving a class of linearly constrained indefinite quadratic problems by dc algorithms. J. Glob. Optim. 11(3), 253–285 (1997)CrossRefzbMATHGoogle Scholar
  25. 25.
    Horst, R., Thoai, N.: DC programming: overview. J. Optim. Theory Appl. 103(1), 1–43 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Lanckriet, G., Sriperumbudur, B.: On the convergence of the concave–convex procedure. In: Advances in Neural Information Processing Systems, pp. 1759–1767 (2009)Google Scholar
  27. 27.
    Lasserre, J.B.: Convexity in semialgebraic geometry and polynomial optimization. SIAM J. Optim. 19(4), 1995–2014 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Ling, C., Nie, J., Qi, L., Ye, Y.: Biquadratic optimization over unit spheres and semidefinite programming relaxations. SIAM J. Optim. 20(3), 1286–1310 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lipp, T., Boyd, S.: Variations and extensions of the convex–concave procedure (2014). http://web.stanford.edu/~boyd/papers/cvx_ccv.html
  30. 30.
    Lou, Y., Osher, S., Xin, J.: Computational aspects of constrained \(l_1-l_2\) minimization for compressive sensing. In: Modelling, Computation and Optimization in Information Systems and Management Sciences, pp. 169–180. Springer (2015)Google Scholar
  31. 31.
    Magnani, A., Lall, S., Boyd, S.: Tractable fitting with convex polynomials via sum of squares. In: Proceedings of the 44th IEEE Conference on Decision and Control (2005)Google Scholar
  32. 32.
    Megretski, A.: SPOT: systems polynomial optimization tools (2013)Google Scholar
  33. 33.
    MOSEK Reference Manual: Version 7. Latest version http://www.mosek.com/ (2013)
  34. 34.
    Parrilo, P.A.: Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization. Ph.D. thesis, California Institute of Technology (2000)Google Scholar
  35. 35.
    Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Progr. 96(2, Ser. B), 293–320 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Parrilo, P.A., Sturmfels, B.: Minimizing polynomial functions. Algor. Quant. Real Algebr. Geom. DIMACS Ser. Discrete Math. Theor. Comput. Sci. 60, 83–99 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Piot, B., Geist, M., Pietquin, O.: Difference of convex functions programming for reinforcement learning. In: Advances in Neural Information Processing Systems, pp. 2519–2527 (2014)Google Scholar
  38. 38.
    Reznick, B.: Some concrete aspects of Hilbert’s 17th problem. In: Contemporary Mathematics, vol. 253, pp. 251–272. American Mathematical Society (2000)Google Scholar
  39. 39.
    Salakhutdinov, R., Roweis, S., Ghahramani, Z.: On the convergence of bound optimization algorithms. In: Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence, pp. 509–516. Morgan Kaufmann Publishers Inc. (2002)Google Scholar
  40. 40.
    Tao, P.D., Hoai An, L.T.: Convex analysis approach to dc programming: theory, algorithms and applications. Acta Mathematica Vietnamica 22(1), 289–355 (1997)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Tao, P.D.: Duality in dc (difference of convex functions) optimization. Subgradient methods. In: Trends in Mathematical Optimization, pp. 277–293. Springer (1988)Google Scholar
  42. 42.
    Toland, J.: On subdifferential calculus and duality in non-convex optimization. Mémoires de la Société Mathématique de France 60, 177–183 (1979)CrossRefzbMATHGoogle Scholar
  43. 43.
    Tuy, H.: A general deterministic approach to global optimization via dc programming. N.-Holl. Math. Stud. 129, 273–303 (1986)CrossRefzbMATHGoogle Scholar
  44. 44.
    Tuy, H.: Global minimization of a difference of two convex functions. In: Nonlinear Analysis and Optimization, pp. 150–182. Springer (1987)Google Scholar
  45. 45.
    Tuy, H.: DC optimization: theory, methods and algorithms. In: Handbook of Global Optimization, pp. 149–216. Springer (1995)Google Scholar
  46. 46.
    Tuy, H., Horst, R.: Convergence and restart in branch-and-bound algorithms for global optimization. Application to concave minimization and dc optimization problems. Math. Progr. 41(1–3), 161–183 (1988)CrossRefzbMATHGoogle Scholar
  47. 47.
    Wang, S., Schwing, A., Urtasun, R.: Efficient inference of continuous markov random fields with polynomial potentials. In: Advances in Neural Information Processing Systems, pp. 936–944 (2014)Google Scholar
  48. 48.
    Yuille, A., Rangarajan, A.: The concave–convex procedure (CCCP). Adv. Neural Inf. Process. Syst. 2, 1033–1040 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2017

Authors and Affiliations

  1. 1.ORFEPrinceton UniversityPrincetonUSA

Personalised recommendations