Advertisement

Mathematical Programming

, Volume 150, Issue 1, pp 79–98 | Cite as

Minimum concave cost flow over a grid network

  • Qie He
  • Shabbir Ahmed
  • George L. Nemhauser
Full Length Paper Series B

Abstract

The minimum concave cost network flow problem (MCCNFP) is NP-hard, but efficient polynomial-time algorithms exist for some special cases such as the uncapacitated lot-sizing problem and many of its variants. We study the MCCNFP over a grid network with a general nonnegative separable concave cost function. We show that this problem is polynomially solvable when all sources are in the first echelon and all sinks are in two echelons, and when there is a single source but many sinks in multiple echelons. The polynomiality argument relies on a combination of a particular dynamic programming formulation and an investigation of the extreme points of the underlying flow polyhedron. We derive an analytical formula for the inflow into any node in an extreme point solution, which generalizes a result of Zangwill (Manag Sci 14(7):429–450, 1968) for the multi-echelon lot-sizing problem.

Keywords

Min concave cost flow Grid network Lot-sizing model 

Mathematics Subject Classification

90B05 90B10 90B30 90C11 90C35 

References

  1. 1.
    Aggarwal, A., Park, J.K.: Improved algorithms for economic lot size problems. Oper. Res. 41(3), 549–571 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Upper Saddle River (1993)zbMATHGoogle Scholar
  3. 3.
    Atamtürk, A., Küçükyavuz, S.: Lot sizing with inventory bounds and fixed costs: polyhedral study and computation. Oper. Res. 53(4), 711–730 (2005)CrossRefzbMATHGoogle Scholar
  4. 4.
    Atamtürk, A., Küçükyavuz, S.: An \({O}(n^2)\) algorithm for lot sizing with inventory bounds and fixed costs. Oper. Res. Lett. 36(3), 297–299 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Dekker, R., Fleischmann, M., Inderfurth, K., Van Wassenhove, L.N. (eds.): Reverse Logistics: Quantitative Models for Closed-Loop Supply Chains. Springer, Berlin (2004)Google Scholar
  6. 6.
    Erickson, R.E., Monma, C.L., Veinott Jr, A.F.: Send-and-split method for minimum-concave-cost network flows. Math. Oper. Res. 12(4), 634–664 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Federgruen, A., Tzur, M.: A simple forward algorithm to solve general dynamic lot sizing models with \(n\) periods in \({O}(n\log n)\) or \({O}(n)\) time. Manag. Sci. 37(8), 909–925 (1991)CrossRefzbMATHGoogle Scholar
  8. 8.
    Florian, M., Klein, M.: Deterministic production planning with concave costs and capacity constraints. Manag. Sci. 18(1), 12–20 (1971)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Guisewite, G.M., Pardalos, P.M.: Minimum concave-cost network flow problems: applications, complexity, and algorithms. Ann. Oper. Res. 25(1), 75–99 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Guisewite, G.M., Pardalos, P.M.: A polynomial time solvable concave network flow problem. Networks 23(2), 143–147 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Kaminsky, P., Simchi-Levi, D.: Production and distribution lot sizing in a two stage supply chain. IIE Trans. 35(11), 1065–1075 (2003)CrossRefGoogle Scholar
  12. 12.
    Martin, R.: Generating alternative mixed-integer programming models using variable redefinition. Oper. Res. 35(6), 820–831 (1987)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Pochet, Y., Wolsey, L.A.: Production Planning by Mixed Integer Programming. Springer, New York (2006)zbMATHGoogle Scholar
  14. 14.
    Tuy, H., Ghannadan, S., Migdalas, A., Värbrand, P.: The minimum concave cost network flow problem with fixed numbers of sources and nonlinear arc costs. J. Glob. Optim. 6(2), 135–151 (1995)CrossRefzbMATHGoogle Scholar
  15. 15.
    Tuy, H., Ghannadan, S., Migdalas, A., Värbrand, P.: A strongly polynomial algorithm for a concave production-transportation problem with a fixed number of nonlinear variables. Math. Program. 72(3), 229–258 (1996)CrossRefzbMATHGoogle Scholar
  16. 16.
    van den Heuvel, W., Wagelmans, A.P.: Four equivalent lot-sizing models. Oper. Res. Lett. 36(4), 465–470 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    van Hoesel, S., Romeijn, H.E., Morales, D.R., Wagelmans, A.P.: Integrated lot sizing in serial supply chains with production capacities. Manag. Sci. 51(11), 1706–1719 (2005)CrossRefzbMATHGoogle Scholar
  18. 18.
    Wagelmans, A., van Hoesel, S., Kolen, A.: Economic lot sizing: an \({O}(n\log n)\) algorithm that runs in linear time in the Wagner–Whitin case. Oper. Res. 40(1), 145–156 (1992)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Wagner, H.M., Whitin, T.M.: Dynamic version of the economic lot size model. Manag. Sci. 5(1), 89–96 (1958)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Zangwill, W.I.: Minimum concave cost flows in certain networks. Manag. Sci. 14(7), 429–450 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Zangwill, W.I.: A backlogging model and a multi-echelon model of a dynamic economic lot size production system-a network approach. Manag. Sci. 15(9), 506–527 (1969)CrossRefzbMATHGoogle Scholar
  22. 22.
    Zhang, M., Küçükyavuz, S., Yaman, H.: A polyhedral study of multi-echelon lot sizing with intermediate demands. Oper. Res. 60(4), 918–935 (2012)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg and Mathematical Optimization Society 2014

Authors and Affiliations

  1. 1.Department of Industrial and Systems EngineeringUniversity of MinnesotaMinneapolisUSA
  2. 2.H. Milton Stewart School of Industrial and Systems EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations