The use of photobiomodulation therapy or LED and mineral trioxide aggregate improves the repair of complete tibial fractures treated with wire osteosynthesis in rodents

Abstract

The repair of large bone defects is lengthy and complex. Both biomaterials and phototherapy have been used to improve bone repair. We aimed to describe histologically the repair of tibial fractures treated by wiring (W), irradiated or not, with laser (λ780 nm, 70 mW, CW, spot area of 0.5 cm2, 20.4 J/cm2 (4 × 5.1 J/cm2, Twin Flex Evolution®, MM Optics, Sao Carlos, SP, Brazil) per session, 300 s, 142.8 J/cm2 per treatment) or LED (λ850 ± 10 nm, 150 mW, spot area of 0.5 cm2, 20.4 J/cm2 per session, 64 s, 142.8 J/cm2 per treatment, Fisioled®, MM Optics, Sao Carlos, Sao Paulo, Brazil) and associated or not to the use of mineral trioxide aggregate (MTA, Angelus®, Londrina, PR, Brazil). Inflammation was discrete on groups W and W + LEDPT and absent on the others. Phototherapy protocols started immediately before suturing and repeated at every other day for 15 days. Collagen deposition intense on groups W + LEDPT, W + BIO-MTA + LaserPT and W + BIO-MTA + LEDPT and discrete or moderate on the other groups. Reabsorption was discrete on groups W and W + LEDPT and absent on the other groups. Neoformation varied greatly between groups. Most groups were partial and moderately filed with new-formed bone (W, W + LaserPT, W + LEDPT, W + BIO-MTA + LEDPT). On groups W + BIO-MTA and W + BIO-MTA + LaserPT bone, neoformation was intense and complete. Our results are indicative that the association of MTA and PBMT (λ = 780 nm) improves the repair of complete tibial fracture treated with wire osteosynthesis in a rodent model more efficiently than LED (λ = 850 ± 10 nm).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Brannigan K, Griffin M (2016) An update into the application of nanotechnology in bone healing. Open Orthop J 30:808–823. https://doi.org/10.2174/1874325001610010808

    Article  Google Scholar 

  2. 2.

    Broaddus WC, Holloway KL, Winters CJ, Bullock MR, Graham RS, Mathern ME, Ward JD, Young HF (2002) Titanium miniplates or stainless-steel wire for cranial fixation: a prospective randomized comparison. J Neurosurg 96:244–247. https://doi.org/10.3171/jns.2002.96.2.0244

    Article  PubMed  Google Scholar 

  3. 3.

    Preciou DS, Cardoso AB, Cardoso MC, Doucet JC (2014) Cost comparison of genioplasty: when indicated, wire osteosynthesis is more cost effective than plate and screw fixation. J Oral Maxillofac Surg 18:439–444. https://doi.org/10.1007/s10006-013-0437-y

    Article  Google Scholar 

  4. 4.

    Motamedian SR, Khojaste M, Khojasteh A (2016) Success rate of implants placed in autogenous bone blocks versus allogenic bone blocks: a systematic literature review. Ann Maxillofac Surg 6:78–90. https://doi.org/10.4103/2231-0746.186143

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Torabinejad M, Parirokh M (2010) Mineral trioxide aggregate: a comprehensive literature review- part II: leakage and biocompatibility investigations. J Endod 36:190–202. https://doi.org/10.1016/j.joen.2009.09.010

    Article  PubMed  Google Scholar 

  6. 6.

    Pinheiro ALB, Soares LGP, Barbosa AFS, Ramalho LMP, dos Santos JN (2012) Does LED phototherapy influence the repair of bone fractured sites grafted with MTA, bone morphogenetic proteins, and guided bone regeneration? A description of the repair process on rodents. Lasers Med Sci 27:1013–1024. https://doi.org/10.1007/s10103-011-1033-8

    Article  PubMed  Google Scholar 

  7. 7.

    Torabinejad M, Moazami M, Moaddel H, Hawkins J, Gustefson C et al (2017) Effect of MTA particle size on periapical healing. Int Endod J 50(Suppl 2):e3–e8. https://doi.org/10.1111/iej.12738

    Article  PubMed  Google Scholar 

  8. 8.

    Gandolfi MG, Iezzi G, Piattelli A, Prati C, Scarano A (2017) Osteoinductive potential and bone-bonding ability of ProRoot MTA, MTA plus and biodentine in rabbit intramedullary model: microchemical characterization and histological analysis. Dent Mater 33:e221–e238. https://doi.org/10.1016/j.dental.2017.01.017

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Mandić B, Lazić Z, Marković A, Mandić B et al (2015) Influence of postoperative low-level laser therapy on the osseointegration of self-tapping implants in the posterior maxilla: a 6-week split-mouth clinical study. Vojnosanit Pregl 72:233–240. https://doi.org/10.2298/VSP131202075M

    Article  PubMed  Google Scholar 

  10. 10.

    Flieger R, Gedrange T, Grzech-Leśniak K, Dominiak M, Matys J (2020) Low-level laser therapy with a 635 nm diode laser affects orthodontic mini-implants stability: a randomized clinical Split-mouth trial. J Clin Med 9:112. https://doi.org/10.3390/jcm9010112

    CAS  Article  Google Scholar 

  11. 11.

    Matys J, Świder K, Grzech-Leśniak K, Dominiak M, Romeo U (2019, Article ID 2785302) Photobiomodulation by a 635nm diode laser on peri-implant bone: primary and secondary stability and bone density analysis—a randomized clinical trial. Biomed Res Int. https://doi.org/10.1155/2019/2785302

  12. 12.

    Weber JB, Pinheiro ALB, de Oliveira MG, Oliveira FA, Ramalho LM (2006) Laser therapy improves healing of bone defects submitted to autologous bone graft. Photomed Laser Surg 24:38–44. https://doi.org/10.1089/pho.2006.24.38

    Article  PubMed  Google Scholar 

  13. 13.

    Pinheiro ALB, Soares LGP, Marques AM, Cangussú MC, Pacheco MT, Silveira L Jr (2017) Biochemical changes on the repair of surgical bone defects grafted with biphasic synthetic micro-granular HA + β-tricalcium phosphate induced by laser and LED phototherapies and assessed by Raman spectroscopy. Lasers Med Sci 32:663–672. https://doi.org/10.1007/s10103-017-2165-2

    Article  PubMed  Google Scholar 

  14. 14.

    Soares DM, Barros AAA, Assis AO, Lyra S, Figueira E, Dantas EM et al (2014) Effect of laser therapy combined with biomaterials for treatment of periodontal bone defects. Revista Clínica de Periodoncia, Implantología y Rehabilitación Oral 7:25–28

    Article  Google Scholar 

  15. 15.

    Pinheiro ALB, Santos NRS, Oliveira PC, Aciole GT, Ramos TA, Gonzalez TA, Silva LN, Barbosa AF, Silveira L (2013) The efficacy of the use of IR laser phototherapy associated to biphasic ceramic graft and guided bone regeneration on surgical fractures treated with wire osteosynthesis: a comparative laser fluorescence and Raman spectral study on rabbits. Lasers Med Sci 28:815–822. https://doi.org/10.1007/s10103-012-1166-4

    Article  PubMed  Google Scholar 

  16. 16.

    Lopes CB, Pacheco MTT, Silveira L, Cangussú MCT, Pinheiro ALB (2010) The effect of the association of near infrared laser therapy, bone morphogenetic proteins, and guided bone regeneration on tibial fractures treated with internal rigid fixation: a Raman spectroscopic study. J Biomed Mater Res A 94:1257–1263. https://doi.org/10.1002/jbm.a.32800

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Pinheiro ALB, Lopes CB, Pacheco MTT, Brugnera A, Zanin FA, Cangussú MC, Silveira L (2010) Raman spectroscopy validation of DIAGNOdent-assisted fluorescence readings on tibial fractures treated with laser phototherapy, BMPs, guided bone regeneration, and miniplates. Photomed Laser Surg 28:S89–S97. https://doi.org/10.1089/pho.2009.2674

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Lopes CB, Pacheco MTT, Silveira L, Duarte J, Cangussú MC, Pinheiro ALB (2007) The effect of the association of NIR laser therapy BMPs, and guided bone regeneration on tibial fractures treated with wire osteosynthesis: Raman spectroscopy study. J Photochem Photobiol B 89:125–130. https://doi.org/10.1016/j.jphotobiol.2007.09.011

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Pinheiro ALB, Soares LGP, Silva ACP et al (2018) Laser/LED phototherapy on the repair of tibial fracture treated with wire osteosynthesis evaluated by Raman spectroscopy. Lasers Med Sci 33:1657–1666. https://doi.org/10.1007/s10103-018-2508-7

    Article  PubMed  Google Scholar 

  20. 20.

    Bystrom A, Claesson R, Sundqvist G (1995) The antibacterial effect of camphorated paramonochlorophenol, camphorated phenol and calcium hydroxide in the treatment of infected root canals. Endod Dent Traumatol 5:170–175. https://doi.org/10.1111/j.1600-9657.1985.tb00652.x

    Article  Google Scholar 

  21. 21.

    Mitchell PJ, Pitt Ford TR, Torabinejad M, McDonald F (1999) Osteoblast biocompatibility of mineral trioxide aggregate. Biomaterials 20:167–173. https://doi.org/10.1016/S0142-9612(98)00157-4

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Pinheiro ALB, Gerbi MEMM (2006) Photoengineering of bone repair processes. Photomed Laser Surg 24:169–178. https://doi.org/10.1089/pho.2006.24.169

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Garcia LDFR, Huck C, Scardueli CR, Souza Costa CA (2015) Repair of bone defects filled with new calcium aluminate cement (EndoBinder). J Endod 41:864–870. https://doi.org/10.1002/jbm.a.33107

    CAS  Article  Google Scholar 

  24. 24.

    Pinheiro ALB, Soares LGP, Aciole GTS, Correia NA, Barbosa AFS, Ramalho LMP, Santos JN (2011) Light microscopic description of the effects of laser phototherapy on bone defects grafted with mineral trioxide aggregate, bone morphogenetic proteins, and guided bone regeneration in a rodent model. J Biomed Mater Res A 98:212–221. https://doi.org/10.1002/jbm.a.33107

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by National Council for Scientific and Technological Development—CNPq [Research Grant 301402/2010-8].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antônio L. B. Pinheiro.

Ethics declarations

This work was approved by Animal Ethics Committee of the Faculty of Dentistry of the Federal University of Bahia, Salvador, Bahia, Brazil (Approval no. 17/10/2012).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pinheiro, A.L.B., Soares, L.G.P., da Silva, A.C.P. et al. The use of photobiomodulation therapy or LED and mineral trioxide aggregate improves the repair of complete tibial fractures treated with wire osteosynthesis in rodents. Lasers Med Sci (2020). https://doi.org/10.1007/s10103-020-03074-3

Download citation

Keywords

  • Biomaterial
  • Bone defect
  • Light microscopy
  • Histomorphometry
  • Phototherapy