Investigation of LED-based photodynamic therapy efficiency on breast cancer cells

Abstract

Photodynamic therapy (PDT) is based on special light source, photosensitizer (PS), and in the presence of oxygen. Different light sources have been used for PDT applications. Recent studies have focused on LED light sources for PDT applications due to reducing the cost of laser-based PDT and providing easy access for research laboratory or clinic facilities. LED-mediated PDT applications have shown promising results for the treatment of different types of disease. However, few studies have determined the effects of LED-based PDT on cancer cells. For the first time, the aim of this study was to explore the therapeutic effects of 5-aminolevulinic acid (5-ALA)-mediated PDT after LED irradiation on two sub-types (a poorly aggressive MCF-7 and a highly aggressive MDA-MB-231) of breast cancer cell lines. The effectiveness of 5-ALA PDT treatment was evaluated by WST-1, annexin V, and acridine orange staining with different energy levels. The LED system was specially developed with optical power and wavelength stability techniques. The system consists of user interface and embedded LED controller with real-time optic power output calibration by photodiode feedback. Our results demonstrated that the cell viability of breast cancer cells was considerably decreased a LED dose-dependent manner (P < 0.05). Additionally, a significant increase in the percentage of apoptotic cells was detected in breast cancer cells after irradiation with LED at a density of 18 and 30 J/cm2 energy. Consequently, the LED system could be effectively used for irradiation of 5-ALA in the treatment of breast cancer cells.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Dolmans D, Fukumura D, Jain R (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387. https://doi.org/10.1038/nrc1071

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Agostinis P, Berg K, Cengel KA et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281. https://doi.org/10.3322/caac.20114

    PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 1:279–293. https://doi.org/10.1016/S1572-1000(05)00007-4

    CAS  Article  Google Scholar 

  4. 4.

    Wilson BC, Patterson MS (2008) The physics, biophysics and technology of photodynamic therapy. Phys Med Biol 53:R61–R109. https://doi.org/10.1088/0031-9155/53/9/R01

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Panjehpour M, Overholt BF, DeNovo RC, Petersen MG, Sneed RE (1993) Comparative study between pulsed and continuous wave lasers for photofrin photodynamic therapy. Lasers Surg Med 13(3):296–304. https://doi.org/10.1002/lsm.1900130306

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Neckel CP (2001) Comparative study on cw mode versus pulsed mode in AlGaAs-diode lasers. Proc SPIE 4249, Lasers in Dentistry VII. https://doi.org/10.1117/12.424515

  7. 7.

    Mang TS (2004) Lasers and light sources for PDT: past, present and future. Photodiagn Photodyn Ther 1(1):43–48. https://doi.org/10.1016/S1572-1000(04)00012-2

    Article  Google Scholar 

  8. 8.

    Matthewson K, Coleridge-Smith P, Northfield TC et al (1986) Comparison of continuous-wave and pulsed excitation for interstitial neodymiurn-YAG laser-induced hyperthermia. Lasers Med Sci 1:197–201. https://doi.org/10.1007/BF02040238

    Article  Google Scholar 

  9. 9.

    Feather JW, Driver KPR, Lowdell C, Dixon B (1990) Light delivery to tumour tissue through implanted optical fibres during photodynamic therapy. Lasers Med Sci 5:345–350

    Article  Google Scholar 

  10. 10.

    Star WM (1990) Light delivery and light dosimetry for photodynamic therapy. Lasers Med Sci 5:107–113

    Article  Google Scholar 

  11. 11.

    Murrer LH, Marijnissen JP, Star WM (1996) Light distribution by linear diffusing sources for photodynamic therapy. Phys Med Biol 41:951–961

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Juzeniene A, Juzenas P, Ma LW, Iani V, Moan J (2004) Effectiveness of different light sources for 5-aminolevulinic acid photodynamic therapy. Lasers Med Sci 19:139–149

    PubMed  Article  Google Scholar 

  13. 13.

    Sandell JL, Zhu TC (2011) A review of in-vivo optical properties of human tissues and its impact on PDT. J Biophotonics 4(11-12):773–787. https://doi.org/10.1002/jbio.201100062

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Lim HS (2011) Development and optimization of a diode laser for photodynamic therapy. Laser Ther 20(3):195–203. https://doi.org/10.5978/islsm.20.195

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Kamanli AF, Yildiz MZ, Arslan H et al (2020) Development of a new multi-mode NIR laser system for photodynamic therapy. Opt Laser Technol 128:106229

    CAS  Article  Google Scholar 

  16. 16.

    Agut-Busquet E, Romaní J, Gilaberte Y et al (2016) Photodynamic therapy with intralesional methylene blue and a 635 nm light-emitting diode lamp in hidradenitis suppurativa: a retrospective follow-up study in 7 patients and a review of the literature. Photochem Photobiol Sci 15(8):1020–1028. https://doi.org/10.1039/c6pp00082g

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Saager RB, Cuccia DJ, Saggese S, Kelly KM, Durkin AJ (2013) A light emitting diode (LED) based spatial frequency domain imaging system for optimization of photodynamic therapy of nonmelanoma skin cancer: quantitative reflectance imaging. Lasers Surg Med 45(4):207–215. https://doi.org/10.1002/lsm.22139

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. 18.

    Leal CRL, Alvarenga LH, Oliveira-Silva T et al (2017) Antimicrobial photodynamic therapy on Streptococcus mutans is altered by glucose in the presence of methylene blue and red LED. Photodiagn Photodyn Ther 19:1–4. https://doi.org/10.1016/j.pdpdt.2017.04.004

    CAS  Article  Google Scholar 

  19. 19.

    Wawrzyniec K, Kawczyk-Krupka A, Czuba ZP, Król W, Sieroń A (2015) The influence of ALA-mediated photodynamic therapy on secretion of selected growth factors by colon cancer cells in hypoxia-like environment in vitro. Photodiagn Photodyn Ther 12(4):598–611. https://doi.org/10.1016/j.pdpdt.2015.11.001

    CAS  Article  Google Scholar 

  20. 20.

    Lim HJ, Oh CH (2011) Indocyanine green-based photodynamic therapy with 785nm light emitting diode for oral squamous cancer cells. Photodiagn Photodyn Ther 8(4):337–342. https://doi.org/10.1016/j.pdpdt.2011.06.002

    CAS  Article  Google Scholar 

  21. 21.

    Jamali Z, Hejazi SM, Ebrahimi SM, Moradi-Sardareh H, Paknejad M (2018) Effects of LED-based photodynamic therapy using red and blue lights, with natural hydrophobic photosensitizers on human glioma cell line. Photodiagn Photodyn Ther 21:50–54. https://doi.org/10.1016/j.pdpdt.2017.11.002

    CAS  Article  Google Scholar 

  22. 22.

    Hatakeyama T, Murayama Y, Komatsu S et al (2013) Efficacy of 5-aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes in human colon cancer cells. Oncol Rep 29(3):911–916. https://doi.org/10.3892/or.2013.2220

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Tanaka M, Kataoka H, Mabuchi M et al (2011) Anticancer effects of novel photodynamic therapy with glycoconjugated chlorin for gastric and colon cancer. Anticancer Res 31(3):763–769

    CAS  PubMed  Google Scholar 

  24. 24.

    Ao C, Xie J, Li Wang L (2017) 5-aminolevulinic acid photodynamic therapy for anal canal condylomaacuminatum: a series of 19 cases and literature review. Photodiagn Photodyn Ther 19:308–344. https://doi.org/10.1016/j.pdpdt.2018.06.022

    CAS  Article  Google Scholar 

  25. 25.

    Wachowska M, Muchowicz A, Firczuk M et al (2011) Aminolevulinic acid (ala) as a prodrug in photodynamic therapy of cancer. Molecules 16(5):4140–4164. https://doi.org/10.3390/molecules16054140

    CAS  PubMed Central  Article  Google Scholar 

  26. 26.

    Nokes B, Apel M, Jones C, Brown G, Lang JE (2013) Aminolevulinic acid (ALA): photodynamic detection and potential therapeutic applications. J Surg Res 181(2):262–271. https://doi.org/10.1016/j.jss.2013.02.002

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Almerie MQ, Gossedge G, Wright KE, Jayne DG (2015) Photodynamic diagnosis for detection of peritoneal carcinomatosis. J Surg Res 195(1):175–187. https://doi.org/10.1016/j.jss.2015.01.009

    PubMed  Article  Google Scholar 

  28. 28.

    Millon SR, Ostrander JH, Yazdanfar S et al (2010) Preferential accumulation of 5-aminolevulinic acid-induced protoporphyrin IX in breast cancer: a comprehensive study on six breast cell lines with varying phenotypes. J Biomed Opt 15(1):018002. https://doi.org/10.1117/1.3302811

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Banerjee SM, El-Sheikh S, Malhotra A et al (2020) Photodynamic therapy in primary breast cancer. J Clin Med 9(2):483. https://doi.org/10.3390/jcm9020483

    CAS  PubMed Central  Article  Google Scholar 

  30. 30.

    Banerjee SM, MacRobert AJ, Mosse CA (2017) Photodynamic therapy: inception to application in breast cancer. Breast 31:105–113. https://doi.org/10.1016/j.breast.2016.09.016

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Bareche Y, Venet D, Ignatiadis M et al (2018) Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis. Ann Oncol 29(4):895–902. https://doi.org/10.1093/annonc/mdy024

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Ghoncheh M, Pournamdar Z, Salehiniya H (2016) Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac J Cancer Prev 17(S3):43–46. https://doi.org/10.7314/apjcp.2016.17.s3.43

    PubMed  Article  Google Scholar 

  33. 33.

    Kashtan H, Haddad R, Greenberg R, Skornick Y, Kaplan O (2002) A non-laser light source for photodynamic therapy: in vitro effects on normal and malignant cells. J Med 33(1-4):93–104

    PubMed  Google Scholar 

  34. 34.

    Schena E, Saccomandi P, Fong Y (2017) Laser ablation for cancer: past, present and future. J Funct Biomater 8(2):19. https://doi.org/10.3390/jfb8020019

    CAS  PubMed Central  Article  Google Scholar 

  35. 35.

    Erkiert-Polguj A, Halbina A, Polak-Pacholczyk I et al (2016) Light-emitting diodes in photodynamic therapy in non-melanoma skin cancers–own observations and literature review. J Cosmet Laser Ther 18(2):105–110. https://doi.org/10.3109/14764172.2015.1114635

    PubMed  Article  Google Scholar 

  36. 36.

    Kamanli AF, Çetinel G (2020) Comparison of pulse and super pulse radiation modes’ singlet oxygen production effect in antimicrobial photodynamic therapy (AmPDT). Photodiagn Photodyn Ther. https://doi.org/10.1016/j.pdpdt.2020.101706

  37. 37.

    Kamanli AF, Çetinel G, Yildiz MZ (2020) A New handheld singlet oxygen detection system (SODS) and NIR light source based phantom environment for photodynamic therapy applications. Photodiagn Photodyn Ther 29:101577

    CAS  Article  Google Scholar 

  38. 38.

    Mohammadpour H, Fekrazad R (2016) Antitumor effect of combined Dkk-3 and 5-ALA mediated photodynamic therapy in breast cancer cell's colony. Photodiagn Photodyn Ther 14:200–203. https://doi.org/10.1016/j.pdpdt.2016.04.001

    CAS  Article  Google Scholar 

  39. 39.

    Yang X, Palasuberniam P, Myers KA, Wang C, Chen B (2016) Her2 oncogene transformation enhances 5-aminolevulinic acid-mediated protoporphyrin IX production and photodynamic therapy response. Oncotarget 7(36):57798–57810. https://doi.org/10.18632/oncotarget.11058

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Tsai T, Hong RL, Tsai JC et al (2004) Effect of 5-aminolevulinic acid-mediated photodynamic therapy on MCF-7 and MCF-7/ADR cells. Lasers Surg Med 34(1):62–72. https://doi.org/10.1002/lsm.10246

    PubMed  Article  Google Scholar 

  41. 41.

    Abo-Zeid MAM, Abo-Elfadl MT, Mostafa SM (2018) Photodynamic therapy using 5-aminolevulinic acid triggered DNA damage of adenocarcinoma breast cancer and hepatocellular carcinoma cell lines. Photodiagn Photodyn Ther 21:351–356. https://doi.org/10.1016/j.pdpdt.2018.01.011

    CAS  Article  Google Scholar 

  42. 42.

    Osaki T, Takahashi K, Ishizuka M et al (2019) Antimalarial drugs enhance the cytotoxicity of 5-aminolevulinic acid-based photodynamic therapy against the mammary tumor cells of mice in vitro. Molecules 24(21):3891. https://doi.org/10.3390/molecules24213891

    CAS  PubMed Central  Article  Google Scholar 

  43. 43.

    Theodossiou TA, Ali M, Grigalavicius M et al (2019) Simultaneous defeat of MCF7 and MDA-MB-231 resistances by a hypericin PDT–tamoxifen hybrid therapy. NPJ Breast Cancer 5(1):1–10

    CAS  Article  Google Scholar 

  44. 44.

    Guney Eskiler G, Deveci ozkan A, Sozen Kucukkara E et al (2020) Optimization of 5-aminolevulinic acid-based photodynamic therapy protocol for breast cancer cells. PhotodiagnosisPhotodyn Ther. https://doi.org/10.1016/j.pdpdt.2020.101854

Download references

Funding

This work was supported by the Scientific and Technological Research Council of Turkey, TUBITAK 3501 (no. 118E235).

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Experimental analysis were performed by Ali Furkan Kamanlı, Ebru Özyol, Asuman Deveci Ozkan, Elif Sözen Kucukkara, and Gamze Guney Eskiler. The data analysis were performed by Mustafa Zahid Yıldız. The first draft of the manuscript was written by Ali Furkan Kamanlı and Gamze Guney Eskiler, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gamze Guney Eskiler.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamanlı, A.F., Yıldız, M.Z., Özyol, E. et al. Investigation of LED-based photodynamic therapy efficiency on breast cancer cells. Lasers Med Sci (2020). https://doi.org/10.1007/s10103-020-03061-8

Download citation

Keywords

  • Photodynamic therapy
  • 5-aminolevulinic acid
  • Light-emitting diodes (LEDs)
  • Breast cancer