Improving imaging depth by dynamic laser speckle imaging and topical optical clearing for in vivo blood flow monitoring

Abstract

Laser speckle contrast imaging (LSI) is a promising non-invasive full-field blood flow monitoring technique. However, it is still far from clinic practice due to insufficient contrast-to-noise ratio (CNR) and limited detection depth. In this study, an in vivo laser speckle imaging visualization system was constructed to observe the blood circulation on a dorsal skin. A dynamic laser speckle imaging (dLSI) scheme, other than traditional laser speckle contrast analysis method, was applied to separate the dynamic light scattering from the static one to increase the image CNR. Based on the theoretical optimization for dLSI, at least two pixels are required for speckle pattern sampling and a spatial window size of 7 × 7 was optimal to balance the spatial resolution and statistical accuracy. The in vivo experiment observation shows that the CNR is improved 8.4 times by dLSI. The blood vessels were more pronounced, and more capillaries can be observed than in traditional laser speckle contrast images. Topical optical clearing technique by thiazone was combined with dLSI to increase the sampling depth from 700 to 1000 μm.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

References

  1. 1.

    Faurschou A, Olesen AB, Leonardi-Bee J, Haedersdal M (2011) Lasers or light sources for treating port-wine stains. Cochrane Database Syst Rev 11. https://doi.org/10.1002/14651858.CD007152.pub2

  2. 2.

    Holy A, Geronemus RG (1992) Treatment of periorbital port-wine stains with the flashlamp-pumped pulsed dye laser. Arch Ophthalmol 110(6):793–797. https://doi.org/10.1001/archopht.1992.01080180065029

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Rox Anderson R, Parrish JA (1981) Microvasculature can be selectively damaged using dye lasers: a basic theory and experimental evidence in human skin. Lasers Surg Med 1(3):263–276. https://doi.org/10.1002/lsm.1900010310

    Article  Google Scholar 

  4. 4.

    Li D, Li R, Jia H, Chen B, Wu W, Ying Z (2017) Experimental and numerical investigation on the transient vascular thermal response to multi-pulse Nd:YAG laser. Lasers Surg Med 49(9):852–865. https://doi.org/10.1002/lsm.22695

    Article  PubMed  Google Scholar 

  5. 5.

    Xiang H, Chen B (2015) Simulating non-Newtonian flows with the moving particle semi-implicit method with an SPH kernel. Fluid Dyn Res 47(1):015511. https://doi.org/10.1088/0169-5983/47/1/015511

    Article  Google Scholar 

  6. 6.

    Fercher AF, Briers JD (1981) Flow visualization by means of single-exposure speckle photography. Opt Commun 37(5):326–330. https://doi.org/10.1016/0030-4018(81)90428-4

    Article  Google Scholar 

  7. 7.

    Duncan DD, Kirkpatrick SJ (2008) The copula: a tool for simulating speckle dynamics. J Opt Soc Am A 25(1):231–237. https://doi.org/10.1364/JOSAA.25.000231

    Article  Google Scholar 

  8. 8.

    Qiu J, Li P, Luo W, Wang J, Zhang H, Luo Q (2010) Spatiotemporal laser speckle contrast analysis for blood flow imaging with maximized speckle contrast. J Biomed Opt 15(1):016003. https://doi.org/10.1117/1.3290804

    Article  PubMed  Google Scholar 

  9. 9.

    Song L, Zhou Z, Wang X, Zhao X, Elson DS (2016) Simulation of speckle patterns with pre-defined correlation distributions. Biomed Opt Express 7(3):798–809. https://doi.org/10.1364/BOE.7.000798

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Parthasarathy AB, Tom WJ, Gopal A, Zhang X, Dunn AK (2008) Robust flow measurement with multi-exposure speckle imaging. Opt Express 16(3):1975–1989. https://doi.org/10.1364/OE.16.001975

    Article  PubMed  Google Scholar 

  11. 11.

    Zakharov P, Völker AC, Wyss MT, Haiss F, Calcinaghi N, Zunzunegui C, Buck A, Scheffold F, Weber B (2009) Dynamic laser speckle imaging of cerebral blood flow. Opt Express 17(16):13904–13917. https://doi.org/10.1364/OE.17.013904

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Li D, Zhang Y, Chen B (2019) Improving sampling depth of laser speckle imaging by topical optical clearing: a theoretical and in vivo study. J Innovative Opt Health Sci 2050004. https://doi.org/10.1142/s1793545820500042

  13. 13.

    Shi R, Chen M, Tuchin VV, Zhu D (2015) Accessing to arteriovenous blood flow dynamics response using combined laser speckle contrast imaging and skin optical clearing. Biomed Opt Express 6(6):1977–1989. https://doi.org/10.1364/BOE.6.001977

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Jia W, Tran N, Sun V, Marinček M, Majaron B, Choi B, Nelson JS (2012) Photocoagulation of dermal blood vessels with multiple laser pulses in an in vivo microvascular model. Lasers Surg Med 44(2):144–151. https://doi.org/10.1002/lsm.22000

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Liu X, Chen B (2019) In vivo experimental study on the enhancement of optical clearing effect by laser irradiation in conjunction with a chemical penetration enhancer. Appl Sci 9(3):542

    CAS  Article  Google Scholar 

  16. 16.

    Kirkpatrick SJ, Duncan DD, Wells-Gray EM (2008) Detrimental effects of speckle-pixel size matching in laser speckle contrast imaging. Opt Lett 33(24):2886–2888. https://doi.org/10.1364/OL.33.002886

    Article  PubMed  Google Scholar 

  17. 17.

    Rajan V, Varghese B, van Leeuwen TG, Steenbergen W (2008) Speckle size and decorrelation time; space–time correlation analysis of coherent light dynamically scattered from turbid media. Opt Commun 281(6):1755–1760. https://doi.org/10.1016/j.optcom.2007.11.025

    CAS  Article  Google Scholar 

  18. 18.

    Zakharov P, Völker A, Buck A, Weber B, Scheffold F (2006) Quantitative modeling of laser speckle imaging. Opt Lett 31(23):3465–3467. https://doi.org/10.1364/OL.31.003465

    Article  PubMed  Google Scholar 

  19. 19.

    Yuan S, Devor A, Boas DA, Dunn AK (2005) Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging. Appl Opt 44(10):1823–1830. https://doi.org/10.1364/AO.44.001823

    Article  PubMed  Google Scholar 

  20. 20.

    Song X, Pogue BW, Jiang S, Doyley MM, Dehghani H, Tosteson TD, Paulsen KD (2004) Automated region detection based on the contrast-to-noise ratio in near-infrared tomography. Appl Opt 43(5):1053–1062. https://doi.org/10.1364/AO.43.0010531

    Article  PubMed  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (grant number 51727811).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bin Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sang, X., Li, D. & Chen, B. Improving imaging depth by dynamic laser speckle imaging and topical optical clearing for in vivo blood flow monitoring. Lasers Med Sci (2020). https://doi.org/10.1007/s10103-020-03059-2

Download citation

Keywords

  • Laser speckle contrast imaging
  • Hemodynamics
  • Dynamic laser speckle imaging
  • Topical optical clearing