The influence of photodynamic therapy on the Warburg effect in esophageal cancer cells


To investigate whether the Warburg effect is a key modulator on the resistance mechanism of photodynamic therapy (PDT). Glycolysis was examined by the test of lactate product and glucose uptake at different post-PDT time points. Cell viability was detected by the CCK-8 assay and cell proliferation was detected by colony formation assay. The expression of glycolysis and related proteins were examined by western blotting. Target gene was silenced by RNAi. In the present study, we assessed the effect of PDT on cancer cell glycolysis. Our team has demonstrated that pyruvate kinase M2 (PKM2), a key speed-limiting enzyme of glycolysis, was significantly overexpressed in patients with esophageal cancer. Our results in the present study showed that PKM2 was downregulated, and lactate product and glucose uptake were inhibited in cells exposed to 5-aminolevulinic acid (5-ALA)–mediated PDT at 4 h after treatment. However, at 24 h after PDT, we observed a substantial increase in PKM2 expression, lactate product, and glucose uptake. Moreover, silencing of PKM2 gene abrogated the upregulatory effect of PDT on glycolysis at late post-PDT period. 2-Deoxy-D-glucose (2-DG) is a recognized chemical inhibitor of glycolysis. The combined treatment of 2-DG and PDT significantly inhibited tumor growth in vitro at 24 h. These results demonstrate that PDT drives the Warburg effect in a time-dependent manner, and PKM2 plays an important role in this progress, which indicated that PKM2 may be a potential molecular target to increase the sensitivity of esophageal cancer cells to PDT.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Bollschweiler E, Plum P, Monig SP, Holscher AH (2017) Current and future treatment options for esophageal cancer in the elderly. Expert Opin Pharmacother 18(10):1001–1010.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Kato H, Nakajima M (2013) Treatments for esophageal cancer: a review. Gen Thorac Cardiovasc Surg 61(6):330–335.

    Article  PubMed  Google Scholar 

  3. 3.

    Yoshioka M, Ohashi S, Ida T, Nakai Y, Kikuchi O, Amanuma Y, Matsubara J, Yamada A, Miyamoto S, Natsuizaka M, Nakagawa H, Chiba T, Seno H, Muto M (2017) Distinct effects of EGFR inhibitors on epithelial- and mesenchymal-like esophageal squamous cell carcinoma cells. J Exp Clin Cancer Res 36(1):101.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Li Y, Sui H, Jiang C, Li S, Han Y, Huang P, Du X, Du J, Bai Y (2018) Dihydroartemisinin increases the sensitivity of photodynamic therapy via NF-kappaB/HIF-1alpha/VEGF pathway in esophageal cancer cell in vitro and in vivo. Cell Physiol Biochem 48(5):2035–2045.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Li YJ, Zhou JH, Du XX, de X J, Wu CL, Huang P, Han Y, Sui H, Wei XL, Liu L, Yuan HH, Zhang TT, Zhang WJ, Xie R, Lang XH, Liu T, Jiang CL, Wang LY, Bai YX (2014) Dihydroartemisinin accentuates the anti-tumor effects of photodynamic therapy via inactivation of NF-kappaB in Eca109 and Ec9706 esophageal cancer cells. Cell Physiol Biochem 33(5):1527–1536.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Muchowicz A, Wachowska M, Stachura J, Tonecka K, Gabrysiak M, Wolosz D, Pilch Z, Kilarski WW, Boon L, Klaus TJ, Golab J (2017) Inhibition of lymphangiogenesis impairs antitumour effects of photodynamic therapy and checkpoint inhibitors in mice. Eur J Cancer 83:19–27.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Abo-Zeid MAM, Abo-Elfadl MT, Mostafa SM (2018) Photodynamic therapy using 5-aminolevulinic acid triggered DNA damage of adenocarcinoma breast cancer and hepatocellular carcinoma cell lines. Photodiagn Photodyn Ther 21:351–356.

    CAS  Article  Google Scholar 

  8. 8.

    Kuzyniak W, Schmidt J, Glac W, Berkholz J, Steinemann G, Hoffmann B, Ermilov EA, Gurek AG, Ahsen V, Nitzsche B, Hopfner M (2017) Novel zinc phthalocyanine as a promising photosensitizer for photodynamic treatment of esophageal cancer. Int J Oncol 50(3):953–963.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Maas AL, Carter SL, Wileyto EP, Miller J, Yuan M, Yu G, Durham AC, Busch TM (2012) Tumor vascular microenvironment determines responsiveness to photodynamic therapy. Cancer Res 72(8):2079–2088.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Yi E, Yang CK, Leem C, Park Y, Chang JE, Cho S, Jheon S (2014) Clinical outcome of photodynamic therapy in esophageal squamous cell carcinoma. J Photochem Photobiol B 141:20–25.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Buttar NS, Wang KK, Lutzke LS, Krishnadath KK, Anderson MA (2001) Combined endoscopic mucosal resection and photodynamic therapy for esophageal neoplasia within Barrett’s esophagus. Gastrointest Endosc 54(6):682–688.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Olsen CE, Weyergang A, Edwards VT, Berg K, Brech A, Weisheit S, Hogset A, Selbo PK (2017) Development of resistance to photodynamic therapy (PDT) in human breast cancer cells is photosensitizer-dependent: possible mechanisms and approaches for overcoming PDT-resistance. Biochem Pharmacol 144:63–77.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Wan J, Wu W, Che Y, Kang N, Zhang R (2015) Low dose photodynamic-therapy induce immune escape of tumor cells in a HIF-1alpha dependent manner through PI3K/Akt pathway. Int Immunopharmacol 28(1):44–51.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Rodriguez ME, Catrinacio C, Ropolo A, Rivarola VA, Vaccaro MI (2017) A novel HIF-1alpha/VMP1-autophagic pathway induces resistance to photodynamic therapy in colon cancer cells. Photochem Photobiol Sci 16(11):1631–1642.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Xu J, Li J, Yu Z, Rao H, Wang S, Lan H (2017) HMGB1 promotes HLF-1 proliferation and ECM production through activating HIF1-alpha-regulated aerobic glycolysis. Pulm Pharmacol Ther 45:136–141.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Kim JW, Tchernyshyov I, Semenza GL, Dang CV (2006) HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3(3):177–185.

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Zhou Z, Liu Y, Qin M, Sheng W, Wang X, Li Z, Zhong R (2014) Depletion of PKM2 leads to impaired glycolysis and cell death in 2-demethoxy-2,3-ethylenediamino hypocrellin B-photoinduced A549 cells. J Photochem Photobiol B 134:1–8.

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Ayyasamy V, Owens KM, Desouki MM, Liang P, Bakin A, Thangaraj K, Buchsbaum DJ, LoBuglio AF, Singh KK (2011) Cellular model of Warburg effect identifies tumor promoting function of UCP2 in breast cancer and its suppression by genipin. PLoS One 6(9):e24792.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Bhattacharya B, Mohd Omar MF, Soong R (2016) The Warburg effect and drug resistance. Br J Pharmacol 173(6):970–979.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Liberti MV, Locasale JW (2016) The Warburg effect: how does it benefit cancer cells? Trends Biochem Sci 41(3):211–218.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Suchorolski MT, Paulson TG, Sanchez CA, Hockenbery D, Reid BJ (2013) Warburg and Crabtree effects in premalignant Barrett’s esophagus cell lines with active mitochondria. PLoS One 8(2):e56884.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Dong G, Mao Q, Xia W, Xu Y, Wang J, Xu L, Jiang F (2016) PKM2 and cancer: the function of PKM2 beyond glycolysis. Oncol Lett 11(3):1980–1986.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Zhang HS, Zhang FJ, Li H, Liu Y, Du GY, Huang YH (2016) Tanshinone A inhibits human esophageal cancer cell growth through miR-122-mediated PKM2 down-regulation. Arch Biochem Biophys 598:50–56.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Golding JP, Wardhaugh T, Patrick L, Turner M, Phillips JB, Bruce JI, Kimani SG (2013) Targeting tumour energy metabolism potentiates the cytotoxicity of 5-aminolevulinic acid photodynamic therapy. Br J Cancer 109(4):976–982.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281.

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Feng X, Zhang Y, Wang P, Liu Q, Wang X (2014) Energy metabolism targeted drugs synergize with photodynamic therapy to potentiate breast cancer cell death. Photochem Photobiol Sci 13(12):1793–1803.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    De Preter G, Neveu MA, Danhier P, Brisson L, Payen VL, Porporato PE, Jordan BF, Sonveaux P, Gallez B (2016) Inhibition of the pentose phosphate pathway by dichloroacetate unravels a missing link between aerobic glycolysis and cancer cell proliferation. Oncotarget 7(3):2910–2920.

    Article  PubMed  Google Scholar 

  28. 28.

    Ju R, Guo L, Li J, Zhu L, Yu X, Chen C, Chen W, Ye C, Zhang D (2016) Carboxyamidotriazole inhibits oxidative phosphorylation in cancer cells and exerts synergistic anti-cancer effect with glycolysis inhibition. Cancer Lett 370(2):232–241.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Xintaropoulou C, Ward C, Wise A, Marston H, Turnbull A, Langdon SP (2015) A comparative analysis of inhibitors of the glycolysis pathway in breast and ovarian cancer cell line models. Oncotarget 6(28):25677–25695.

    Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Ganapathy-Kanniappan S (2018) Molecular intricacies of aerobic glycolysis in cancer: current insights into the classic metabolic phenotype. Crit Rev Biochem Mol Biol 53(6):667–682.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Weijer R, Clavier S, Zaal EA, Pijls MM, van Kooten RT, Vermaas K, Leen R, Jongejan A, Moerland PD, van Kampen AH, van Kuilenburg AB, Berkers CR, Lemeer S, Heger M (2017) Multi-OMIC profiling of survival and metabolic signaling networks in cells subjected to photodynamic therapy. Cell Mol Life Sci 74(6):1133–1151.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    van Niekerk G, Engelbrecht AM (2018) Role of PKM2 in directing the metabolic fate of glucose in cancer: a potential therapeutic target. Cell Oncol (Dordr) 41(4):343–351.

    CAS  Article  Google Scholar 

  33. 33.

    Wong N, Ojo D, Yan J, Tang D (2015) PKM2 contributes to cancer metabolism. Cancer Lett 356(2 Pt A):184–191.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Li S, Huang P, Gan J, Ling X, Du X, Liao Y, Li L, Meng Y, Li Y, Bai Y (2019) Dihydroartemisinin represses esophageal cancer glycolysis by down-regulating pyruvate kinase M2. Eur J Pharmacol 854:232–239.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Parodi MB, Liberali T, Pedio M, Francis PJ, Piccolino FC, Fiotti N, Romano M, Ravalico G (2006) Photodynamic therapy of subfoveal choroidal neovascularization secondary to reticular pattern dystrophy: three-year results of an uncontrolled, prospective case series. Am J Ophthalmol 141(6):1152–1154.

    Article  PubMed  Google Scholar 

  36. 36.

    Ji HT, Chien LT, Lin YH, Chien HF, Chen CT (2010) 5-ALA mediated photodynamic therapy induces autophagic cell death via AMP-activated protein kinase. Mol Cancer 9:91.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Szokalska A, Makowski M, Nowis D, Wilczynski GM, Kujawa M, Wojcik C, Mlynarczuk-Bialy I, Salwa P, Bil J, Janowska S, Agostinis P, Verfaillie T, Bugajski M, Gietka J, Issat T, Glodkowska E, Mrowka P, Stoklosa T, Hamblin MR, Mroz P, Jakobisiak M, Golab J (2009) Proteasome inhibition potentiates antitumor effects of photodynamic therapy in mice through induction of endoplasmic reticulum stress and unfolded protein response. Cancer Res 69(10):4235–4243.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Ao R, Guan L, Wang Y, Wang JN (2017) Effects of PKM2 gene silencing on the proliferation and apoptosis of colorectal cancer LS-147T and SW620 cells. Cell Physiol Biochem 42(5):1769–1778.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Azoitei N, Becher A, Steinestel K, Rouhi A, Diepold K, Genze F, Simmet T, Seufferlein T (2016) PKM2 promotes tumor angiogenesis by regulating HIF-1alpha through NF-kappaB activation. Mol Cancer 15:3.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Mukherjee J, Ohba S, See WL, Phillips JJ, Molinaro AM, Pieper RO (2016) PKM2 uses control of HuR localization to regulate p27 and cell cycle progression in human glioblastoma cells. Int J Cancer 139(1):99–111.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Liang J, Cao R, Wang X, Zhang Y, Wang P, Gao H, Li C, Yang F, Zeng R, Wei P, Li D, Li W, Yang W (2017) Mitochondrial PKM2 regulates oxidative stress-induced apoptosis by stabilizing Bcl2. Cell Res 27(3):329–351.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Bhuvaneswari R, Thong PS, Gan YY, Soo KC, Olivo M (2010) Evaluation of hypericin-mediated photodynamic therapy in combination with angiogenesis inhibitor bevacizumab using in vivo fluorescence confocal endomicroscopy. J Biomed Opt 15(1):011114.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Peng CL, Lin HC, Chiang WL, Shih YH, Chiang PF, Luo TY, Cheng CC, Shieh MJ (2018) Anti-angiogenic treatment (Bevacizumab) improves the responsiveness of photodynamic therapy in colorectal cancer. Photodiagn Photodyn Ther 23:111–118.

    CAS  Article  Google Scholar 

  44. 44.

    Hsu CC, Yang CS, Peng CH, Lee FL, Lee SM (2011) Combination photodynamic therapy and intravitreal bevacizumab used to treat circumscribed choroidal hemangioma. J Chin Med Assoc 74(10):473–477.

    Article  PubMed  Google Scholar 

  45. 45.

    Bizjak M, Malavasic P, Dolinar K, Pohar J, Pirkmajer S, Pavlin M (2017) Combined treatment with Metformin and 2-deoxy glucose induces detachment of viable MDA-MB-231 breast cancer cells in vitro. Sci Rep 7(1):1761.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references


We are grateful to the Laboratory of Medical Genetics, Department of Biology, Harbin Medical University and State Key Laboratory of Molecular Oncology for their kind generosity of cells. This work was supported by the National Natural Science Foundation of China (81602662), the Wu Jieping Medical Foundation (320.6750.16002), and the Scientific Research Foundation of Harbin Medical University Cancer Hospital (BJQN2018-02).

Author information



Corresponding authors

Correspondence to Yanjing Li or Yuxian Bai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gan, J., Li, S., Meng, Y. et al. The influence of photodynamic therapy on the Warburg effect in esophageal cancer cells. Lasers Med Sci 35, 1741–1750 (2020).

Download citation


  • Esophageal cancer
  • Photodynamic therapy
  • Warburg effect
  • Pyruvate kinase M2
  • 2-Deoxy-D-glucose