Skip to main content
Log in

Polarization-resolved Stokes-Mueller imaging: a review of technology and applications

  • Review Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Polarization microscopy, a powerful optical tool to study anisotropic properties of biomolecules, provides better microstructural information of a sample as compared with conventional optical microscopic techniques. The measurement and analysis of polarization states of light can be performed using both Jones matrix as well as Stokes algebra. Further, the details of optical properties of specimen are characterized by Mueller matrix. However, the application of Jones calculus is limited to perfectly polarized light, but Stokes-Mueller polarimetry is emerging as a promising tool for tissue imaging due to its application irrespective of polarization state of the light. In this review article, we explain the development of Stokes-Mueller formalism in context of linear optics. Furthermore, application of Mueller matrix decomposition (MMD) method to derive sample properties is demonstrated in several bio-medical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Schoenenberger K, Colston BW, Maitland DJ, Da Silva LB, Everett MJ (1998) Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography. Appl Opt 37(25):6026–6036

    Article  CAS  PubMed  Google Scholar 

  2. Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55–80

    Article  CAS  PubMed  Google Scholar 

  3. Kliger DS, Lewis JW (2012) Polarized light in optics and spectroscopy. Elsevier, Amsterdam

    Google Scholar 

  4. Oldenbourg R, Mei G (1995) New polarized light microscope with precision universal compensator. J Microsc 180(2):140–147

    Article  CAS  PubMed  Google Scholar 

  5. Tuchin VV (2016) Polarized light interaction with tissues. J Biomed Opt 21(7):071114

    Article  Google Scholar 

  6. Shindo Y, Oda Y (1992) Mueller matrix approach to fluorescence spectroscopy. Part I: Mueller matrix expressions for fluorescent samples and their application to problems of circularly polarized emission spectroscopy. Appl Spectrosc 46(8):1251–1259

    Article  CAS  Google Scholar 

  7. Inoué S (2008) Microtubule dynamics in cell division: exploring living cells with polarized light microscopy. Annu Rev Cell Dev Biol 24:1–28

    Article  CAS  PubMed  Google Scholar 

  8. Novikova T, Pierangelo A, De Martino A, Benali A, Validire P (2012) Polarimetric imaging for cancer diagnosis and staging. Opt Photonics News 23(10):26–33

    Article  Google Scholar 

  9. Hecht E (2002) Optics, 4th International edn. Addison-Wesley, San Francisco 3:2

  10. Brasselet S (2011) Polarization-resolved nonlinear microscopy: application to structural molecular and biological imaging. Adv Opt Photon 3(3):205

    Article  Google Scholar 

  11. Azzam R (1985) Arrangement of four photodetectors for measuring the state of polarization of light. Opt Lett 10(7):309–311

    Article  CAS  PubMed  Google Scholar 

  12. Song H, Zhao Y, Qi X, Chui YT, Burns SA (2008) Stokes vector analysis of adaptive optics images of the retina. Opt Lett 33(2):137–139

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mazumder N, Qiu J, Foreman MR, Romero CM, Török P, Kao F-J (2013) Stokes vector based polarization resolved second harmonic microscopy of starch granules. Biomed Opt Express 4(4):538–547

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ghosh N, Wood MF, Vitkin IA (2008) Mueller matrix decomposition for extraction of individual polarization parameters from complex turbid media exhibiting multiple scattering, optical activity, and linear birefringence. J Biomed Opt 13(4):044036

    Article  PubMed  Google Scholar 

  15. Sun M, He H, Zeng N, Du E, Guo Y, Peng C, He Y, Ma H (2014) Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters. Appl Opt 53(14):2949–2955

    Article  PubMed  Google Scholar 

  16. Bueno J, Cookson C, Kisilak M, Campbell M (2009) Enhancement of confocal microscopy images using Mueller-matrix polarimetry. J Microsc 235(1):84–93

    Article  CAS  PubMed  Google Scholar 

  17. Shi Y, McClain W, Harris R (1994) Generalized Stokes-Mueller formalism for two-photon absorption, frequency doubling, and hyper-Raman scattering. Phys Rev A 49(3):1999

    Article  CAS  PubMed  Google Scholar 

  18. Da Costa V, Wei R, Lim R, Sun C-H, Brown JJ, Wong BJ-F (2008) Nondestructive imaging of live human keloid and facial tissue using multiphoton microscopy. Arch Facial Plast Surg 10(1):38–43

    Article  PubMed  PubMed Central  Google Scholar 

  19. Oldenbourg R, Török P (2000) Point-spread functions of a polarizing microscope equipped with high-numerical-aperture lenses. Appl Opt 39(34):6325–6331

    Article  CAS  PubMed  Google Scholar 

  20. Lu S-Y, Chipman RA (1996) Interpretation of Mueller matrices based on polar decomposition. JOSA A 13(5):1106–1113

    Article  Google Scholar 

  21. Wood MF, Ghosh N, Wallenburg MA, Li S-H, Weisel RD, Wilson BC, Li R-K, Vitkin IA (2010) Polarization birefringence measurements for characterizing the myocardium, including healthy, infarcted, and stem-cell-regenerated tissues. J Biomed Opt 15(4):047009

    Article  PubMed  Google Scholar 

  22. Ghassemi P, Lemaillet P, Ramella-Roman JC, Shupp JW, Venna SS, Boisvert ME, Flanagan K, Jordan MH, Germer TA (2012) Out-of-plane Stokes imaging polarimeter for early skin cancer diagnosis. J Biomed Opt 17(7):076014

    Article  PubMed  Google Scholar 

  23. Adams DC, Hariri LP, Miller AJ, Wang Y, Cho JL, Villiger M, Holz JA, Szabari MV, Hamilos DL, Harris RS (2016) Birefringence microscopy platform for assessing airway smooth muscle structure and function in vivo. Sci Transl Med 8(359):359ra131–359ra131

    Article  PubMed  PubMed Central  Google Scholar 

  24. Qi J, He H, Ma H, Elson DS (2017) Extended polar decomposition method of Mueller matrices for turbid media in reflection geometry. Opt Lett 42(20):4048–4051

    Article  PubMed  Google Scholar 

  25. Kumar MS, Simon R (1992) Characterization of Mueller matrices in polarization optics. Opt Commun 88(4–6):464–470

    Article  Google Scholar 

  26. Simon B, Simon S, Mukunda N, Gori F, Santarsiero M, Borghi R, Simon R (2010) A complete characterization of pre-Mueller and Mueller matrices in polarization optics. JOSA A 27(2):188–199

    Article  CAS  PubMed  Google Scholar 

  27. Reddy SG, Prabhakar S, Chithrabhanu P, Singh R, Simon R (2016) Polarization state transformation using two quarter wave plates: application to Mueller polarimetry. Appl Opt 55(12):B14–B19

    Article  CAS  PubMed  Google Scholar 

  28. Mohanty SK, Ghosh N, Majumder SK, Gupta PK (2001) Depolarization of autofluorescence from malignant and normal human breast tissues. Appl Opt 40(7):1147–1154

    Article  CAS  PubMed  Google Scholar 

  29. Ellingsen PG, Aas LMS, Hagen VS, Kumar R, Lilledahl MB, Kildemo M (2014) Mueller matrix three-dimensional directional imaging of collagen fibers. J Biomed Opt 19(2):026002

    Article  PubMed  Google Scholar 

  30. Ghosh N, Wood MF, Li S, Weisel RD, Wilson BC, Li RK, Vitkin IA (2009) Mueller matrix decomposition for polarized light assessment of biological tissues. J Biophotonics 2(3):145–156

    Article  CAS  PubMed  Google Scholar 

  31. Qi J, Elson DS (2016) A high definition Mueller polarimetric endoscope for tissue characterisation. Sci Rep 6:25953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang Y, He H, Chang J, He C, Liu S, Li M, Zeng N, Wu J, Ma H (2016) Mueller matrix microscope: a quantitative tool to facilitate detections and fibrosis scorings of liver cirrhosis and cancer tissues. J Biomed Opt 21(7):071112

    Article  Google Scholar 

  33. Wood MF, Ghosh N, Moriyama EH, Wilson BC, Vitkin IA (2009) Proof-of-principle demonstration of a Mueller matrix decomposition method for polarized light tissue characterization in vivo. J Biomed Opt 14(1):014029

    Article  CAS  PubMed  Google Scholar 

  34. Dong Y, Qi J, He H, He C, Liu S, Wu J, Elson DS, Ma H (2017) Quantitatively characterizing the microstructural features of breast ductal carcinoma tissues in different progression stages by Mueller matrix microscope. Biomed Opt Express 8(8):3643–3655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ellingsen PG, Lilledahl MB, Aas LMS, de Lange Davies C, Kildemo M (2011) Quantitative characterization of articular cartilage using Mueller matrix imaging and multiphoton microscopy. J Biomed Opt 16(11):116002

    Article  PubMed  Google Scholar 

  36. Novikova T, Pierangelo A, Manhas S, Benali A, Validire P, Gayet B, De Martino A (2013) The origins of polarimetric image contrast between healthy and cancerous human colon tissue. Appl Phys Lett 102(24):241103

    Article  CAS  Google Scholar 

  37. Antonelli M-R, Pierangelo A, Novikova T, Validire P, Benali A, Gayet B, De Martino A (2010) Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data. Opt Express 18(10):10200–10208

    Article  CAS  PubMed  Google Scholar 

  38. Pierangelo A, Nazac A, Benali A, Validire P, Cohen H, Novikova T, Ibrahim BH, Manhas S, Fallet C, Antonelli M-R (2013) Polarimetric imaging of uterine cervix: a case study. Opt Express 21(12):14120–14130

    Article  PubMed  Google Scholar 

  39. Vizet J, Rehbinder J, Deby S, Roussel S, Nazac A, Soufan R, Genestie C, Haie-Meder C, Fernandez H, Moreau F (2017) In vivo imaging of uterine cervix with a Mueller polarimetric colposcope. Sci Rep 7(1):2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang W, Lim LG, Srivastava S, Bok-Yan So J, Shabbir A, Liu Q (2016) Investigation on the potential of Mueller matrix imaging for digital staining. J Biophotonics 9(4):364–375

    Article  PubMed  Google Scholar 

  41. Pierangelo A, Benali A, Antonelli M-R, Novikova T, Validire P, Gayet B, De Martino A (2011) Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging. Opt Express 19(2):1582–1593

    Article  CAS  PubMed  Google Scholar 

  42. Dong Y, He H, Sheng W, Wu J, Ma H (2017) A quantitative and non-contact technique to characterise microstructural variations of skin tissues during photo-damaging process based on Mueller matrix polarimetry. Sci Rep 7

  43. Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127(12):2893–2917

    Article  CAS  Google Scholar 

  44. Bancelin S, Nazac A, Ibrahim BH, Dokládal P, Decencière E, Teig B, Haddad H, Fernandez H, Schanne-Klein M-C, De Martino A (2014) Determination of collagen fiber orientation in histological slides using Mueller microscopy and validation by second harmonic generation imaging. Opt Express 22(19):22561–22574

    Article  PubMed  Google Scholar 

  45. Arifler D, Pavlova I, Gillenwater A, Richards-Kortum R (2007) Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma. Biophys J 92(9):3260–3274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. He H, He C, Chang J, Lv D, Wu J, Duan C, Zhou Q, Zeng N, He Y, Ma H (2017) Monitoring microstructural variations of fresh skeletal muscle tissues by Mueller matrix imaging. J Biophotonics 10(5):664–673

    Article  CAS  PubMed  Google Scholar 

  47. Chen D, Zeng N, Xie Q, He H, Tuchin VV, Ma H (2017) Mueller matrix polarimetry for characterizing microstructural variation of nude mouse skin during tissue optical clearing. Biomed Opt Express 8(8):3559–3570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kunnen B, Macdonald C, Doronin A, Jacques S, Eccles M, Meglinski I (2015) Application of circularly polarized light for non-invasive diagnosis of cancerous tissues and turbid tissue-like scattering media. J Biophotonics 8(4):317–323

    Article  PubMed  Google Scholar 

  49. Aas LMS, Ellingsen PG, Kildemo M (2011) Near infra-red Mueller matrix imaging system and application to retardance imaging of strain. Thin Solid Films 519(9):2737–2741

    Article  CAS  Google Scholar 

  50. Golaraei A, Kontenis L, Cisek R, Tokarz D, Done SJ, Wilson BC, Barzda V (2016) Changes of collagen ultrastructure in breast cancer tissue determined by second-harmonic generation double Stokes-Mueller polarimetric microscopy. Biomed Opt Express 7(10):4054–4068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank SERB-Department of Science and Technology (DST), Government of India for financial support. The authors thank Dr. K. Satyamoorthy, Director, School of Life Sciences, MAHE, for his encouragement and Manipal Academy of Higher Education, Manipal, for providing the infrastructure and facilities.

Funding

This study was financially supported by SERB-DST, Government of India (Project Number—ECR/2016/001944).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nirmal Mazumder.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

K. U., S., Mahato, K.K. & Mazumder, N. Polarization-resolved Stokes-Mueller imaging: a review of technology and applications. Lasers Med Sci 34, 1283–1293 (2019). https://doi.org/10.1007/s10103-019-02752-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-019-02752-1

Keywords

Navigation