Lasers in Medical Science

, Volume 33, Issue 6, pp 1335–1340 | Cite as

ROS-induced autophagy reduces B16F10 melanoma cell proliferative activity

  • Gustavo Miranda Pires Santos
  • Susana C. P. S. Oliveira
  • Juliana C. S. Monteiro
  • Sandra R. Fagnani
  • Fernando Pires Sampaio
  • Neandder Andrade Correia
  • Pedro J. L. Crugeira
  • Antonio L. B. Pinheiro
Original Article


Cancer is a pathology characterized by increased cell progression and/or reduced programmed cell death. Melanoma shows a rapid increase in cell progression and its resistance to chemotherapy is associated with uncontrolled apoptosis and to mechanisms that increase the flow of the drug out of the cell. The objective of this study was to evaluate the effects of photodynamic therapy (PDT) on the cell proliferation and cellular alterations in B16F10 murine melanoma. For that, four experimental groups were evaluated: the control group; laser group (ʎ = 660 ηm, 40 mW, 2.4 J/cm2); photosensitizer group (solution containing methylene blue and toluidine blue 1:1–12.5 μg/mL); PDT group. The incubation time was 30 min. Fluorescence microscopy assays were performed without fixation with the DAPI, monodansylcadaverine (MDC), and dihydroethidium (DHE) probes. Cell proliferation was also determined at 24-h time. The tests were performed in triplicate and the statistical test used was ANOVA with Tukey post-test. The results demonstrate that the plasma membrane of the cells of all the experimental groups remained intact, ROS production and autophagy significantly increased (p < 0.0005 and p < 0.0071, respectively) only in the PDT group. The cell proliferation essay showed a reduction of 74.2% on the PDT group in relation to the control group. The present study demonstrated that oxidative stress promoted by photodynamic therapy may induce autophagy and consequently reduce cell proliferation in B16F10 melanoma.


Cancer Autophagy Photodynamic therapy 



This work has been funded by the FAPESB (Fundação de Apoio a Pesquisa do Estado da Bahia) grant 04282014.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The use of commercial murine cells (Murine melanoma cells B16F10 (ATCC: CRL-6475) does not need the approval of the Ethics Committee according to Brazilian regulations.


  1. 1.
    Huang T, Zhuge J, Zhang WW (2013) Sensitive detection of BRAF V600E mutation by amplification refractory mutation system (ARMS)-PCR. Biomarker Res 1(1):1–6CrossRefGoogle Scholar
  2. 2.
    Liu H, He Z, Simon HU (2013) Targeting autophagy as a potential therapeutic approach for melanoma therapy. Semin Cancer Biol 23:352–360CrossRefPubMedGoogle Scholar
  3. 3.
    Li X, Wu D, Shen J, Zhou M, Lu Y (2013) Rapamycin induces autophagy in the melanoma cell line M14 via regulation of the expression levels of Bcl-2 and Bax. Oncol Lett 5:167–172CrossRefPubMedGoogle Scholar
  4. 4.
    Ndoye A, Weeraratna AT (2016) Autophagy—an emerging target for melanoma therapy. F1000Res 5:1–9CrossRefGoogle Scholar
  5. 5.
    Scherz-Shouval R, Elazar Z (2007) ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17(9):1–6CrossRefGoogle Scholar
  6. 6.
    Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, Korbelik M, Moan J, Mroz P, Nowis D, Piette J, Wilson BC, Golab J (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bursch W, Ellinger A, Gerner C, Schulte-Hermann R (2004) Caspase independent and autophagic cell death. In: Lockshin RA, Zakeri Z (eds) When cells die II. Wiley-Liss, New York, p 275–310Google Scholar
  8. 8.
    Pires-Santos GM, Oliveira SCPS, Monteiro JSC, Sampaio FJP, Brugnera A, Zanin FAA, Almeida P, Pinheiro ALB (2015) Prospective study of luminous radiation associated technology photosensitive compounds for treatment of diseases. Proc SPIE 9309:1–7Google Scholar
  9. 9.
    Huang YY, Vecchio D, Avci P, Yin R, Garcia-Diaz M, Hamblin MR (2013) Melanoma resistance to photodynamic therapy: new insights. Biol Chem 394(2):239–250CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ishai-Michaeli R, Eldort A, Vlodavsky I (1990) Heparanase activity expressed by platelets, neutrophils, and lymphoma cells releases active fibroblast growth factor from extracellular matrix. Cell Regul 1:833–842CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kepp O, Galluzzi L, Lipinski M, Yuan J, Kroemer G (2011) Cell death assays for drug discovery. Nat Rev Drug Discov 10:221–237CrossRefPubMedGoogle Scholar
  12. 12.
    O’neal ME, Landis DA, Isaacs R (2002) An inexpensive, accurate method for measuring leaf area and defoliation through digital image analysis. J Econ Entomol 95(6):1190–1194CrossRefPubMedGoogle Scholar
  13. 13.
    Bakr EM (2005) A new soflware for measuring leaf area, and area damaged by Tetranychus uritcae Koch. JEN 129(3):173–175Google Scholar
  14. 14.
    Jensen EC (2013) Quantitative analysis of histological staining and fluorescence using ImageJ. Anat Rec 296:378–381CrossRefGoogle Scholar
  15. 15.
    Davids LM, Kleemann B (2011) Combating melanoma: the use of photodynamic therapy as a novel, adjuvant therapeutic tool. Cancer Treat Rev 37:465–475PubMedGoogle Scholar
  16. 16.
    Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24(10):R453–R462CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Luo Y, Zou P, Jing Z, Wang J, Zhou D, Liu L (2011) Autophagy regulates ROS-induced cellular senescence via p21 in a p38 MAPKα dependent manner. Exp Gerontol 46(11):860–867CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Gil-Ad I, Shtaif B, Levkovitz Y, Nordenberg J, Taler M, Korov I, Weizman A (2006) Phenothiazines induce apoptosis in a B16 mouse melanoma cell line and attenuate in vivo melanoma tumor growth. Oncol Rep 15:107–112PubMedGoogle Scholar
  19. 19.
    Latocha M, Ba AZ, Polaniak R, Kuamierz D, Nowosad A, Jurzak M, Romuk E, Kokocińska M, Sliupkas-Dyrda E (2015) Molecular Effects of Amine Derivatives Of Phenothiazine On Cancer Cells C-32 And Snb-19 In Vitro. Acta Pol Pharma Drug Res 72(5):909–915Google Scholar
  20. 20.
    Scherz-Shouval R, Elazar Z (2007) ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17(9):422–427CrossRefPubMedGoogle Scholar
  21. 21.
    Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9(10):1102–1109CrossRefPubMedGoogle Scholar
  22. 22.
    Boya P, González-Polo R, Casares N, Perfettini JL, Dessen P, Larochette N, Métivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 1:1025–1040CrossRefGoogle Scholar
  23. 23.
    Murat O, Lorke DE, Hasan M, Petroianu GA (2011) Cellular and molecular actions of methylene blue in the nervous system. Med Res Rev 31:93–117CrossRefGoogle Scholar
  24. 24.
    Nogueira JJ, González L (2014) Molecular dynamics simulations of binding modes between methylene blue and DNA with alternating GC and AT sequences. Biochemist 53:2391–2412CrossRefGoogle Scholar
  25. 25.
    Oliveira SCPS, Monteiro JSC, Santos GMP, Sampaio FJP, Soares AP, Soares LGP, Pinheiro ALB (2017) LED antimicrobial photodynamic therapy with phenothiazinium dye against Staphylococcus aureus: an in vitro study. J Photochem Photobiol B Biol 175:46–50CrossRefGoogle Scholar
  26. 26.
    Pandey RK, Joshi P (2014) Synthesis and biological significance of porphyrin-based photosensitisers in photodynamic therapy. In: Vo-Dinh T (ed) Biomedical photonics handbook, 2nd edn. CRC Press, Boca Raton, p 31–65Google Scholar
  27. 27.
    Issa MCA, Fassini A, Boechat M, Ferolla ACJ (2016) Photodynamic therapy in photoaging: literature review. Surg Cosmet Dermatol 8(4 Supl. 1):S10–S16Google Scholar
  28. 28.
    Wainwright M (2009) Photossensitisers in biomedicine. Wiley-BlackwellGoogle Scholar
  29. 29.
    Zelickson BD (2005) Mechanisms of action of topical aminolevulinic acid. In: Goldman MP (ed) Photodynamic therapy, 1st edn. Elsevier Saunders, Philadelphia, p 1–12Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Gustavo Miranda Pires Santos
    • 1
  • Susana C. P. S. Oliveira
    • 1
    • 2
  • Juliana C. S. Monteiro
    • 1
    • 2
  • Sandra R. Fagnani
    • 1
  • Fernando Pires Sampaio
    • 1
  • Neandder Andrade Correia
    • 1
  • Pedro J. L. Crugeira
    • 1
  • Antonio L. B. Pinheiro
    • 1
    • 3
    • 4
  1. 1.Center of Biophotonics, School of DentistryFederal University of Bahia – UFBASalvadorBrazil
  2. 2.Department of BiologyFeira de Santana State UniversityFeira de SantanaBrazil
  3. 3.National Institute of Basic Optics and Applied to Life Sciences, Physics Institute of São CarlosUniversity of São PauloSão CarlosBrazil
  4. 4.Biomedical Engineering InstituteUniversidade BrasilSão PauloBrazil

Personalised recommendations