Lasers in Medical Science

, Volume 33, Issue 5, pp 1147–1158 | Cite as

The impact of photobiomodulation on osteoblast-like cell: a review

  • Alessandro Melo Deana
  • Ana Maria de Souza
  • Victor Perez Teixeira
  • Raquel Agneli Mesquita-Ferrari
  • Sandra Kalil Bussadori
  • Kristianne Porta Santos Fernandes
Review Article


In this study, we present a review of the literature on the impact of photobiomodulation on osteoblast-like cell culture. Searches were performed in the PubMed/MEDLINE (Medical Literature Analysis and Retrieval System Online), SCOPUS, and SPIE digital library databases for original articles regarding the effects of LLLT on osteoblast-like cells in experimental models using LLLT published in English from the last 20 years. The search identified 1439 studies. After the analysis of the abstracts, 1409 studies were excluded and 30 studies were then selected for the full-text analysis, 8 of which were excluded. Thus, 22 studies were included for a critical evaluation of the impact of photobiomodulation on osteoblast-like cell culture. The cell lineages studied were primary rat, primary human, saos-2, Osteo-1, MC3T3, MG63, and OFCOL II. Moreover, a wide variety of experimental models were used to experimentally analyze the impact of photobiomodulation, the most common of which were alkaline phosphatase, MTT, and cell count. This review suggests that osteoblastic-like cells are susceptible to photobiomodulation but that most of the light parameters varied by different authors have little to no influence on proliferation but very high levels of irradiance have demonstrated deleterious effects on proliferation, highlighting the bi-phasic effect of photobiomodulation.


Photobiomodulation; laser LED Osteoblast Review 


Role of funding source

There was no funding for this work.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This work is a review; therefore, no ethical committee approval is required.

Informed consent

This work is a review; therefore, no informed consent was necessary.


  1. 1.
    Frare JC, Nicolau RA (2008) Clinical analysis of the effect of laser photobiomodulation (GaAs-904 nm) on temporomandibular joint dysfunction. Braz J Phys Ther 12(1):37–42CrossRefGoogle Scholar
  2. 2.
    Schalch TD, Ferrari RAM, Souza NHC, Albarelo PM, França CM, Bussadori SK et al (2013) Effect of steroid nandrolone decanoate on osteoblast-like cells. Med Sci Technol 54:107–111CrossRefGoogle Scholar
  3. 3.
    Asai T, Suzuki H, Kitayama M, Matsumoto K, Kimoto A, Shigeoka M, Komori T (2014) The long-term effects of red light-emitting diode irradiation on the proliferation and differentiation of osteoblast-like MC3T3-E1 cells. J Med Sci 60(1):E12-E18Google Scholar
  4. 4.
    Khadraa M, Lyngstadaasb SP, Haanæsa HR, Mustafac K et al (2005) Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium implant material. Biomaterials 26:3503–3509CrossRefGoogle Scholar
  5. 5.
    Ozawa Y, Shimizu N, Kariya G, Abiko Y (1998) Low-energy laser irradiation stimulates bone nodule formation at early stages of cell culture in rat calvarial cells. Bone 22(4):347–354CrossRefPubMedGoogle Scholar
  6. 6.
    Stein A, Benayahu D, Maltz L, Oron U (2005) Low-level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg 23:161–166CrossRefPubMedGoogle Scholar
  7. 7.
    Aleksic V, Aoki A, Iwasaki K, Takasaki AA, Wang CY, Abiko Y, Ishikawa I et al (2010) Low-level Er:YAG laser irradiation enhances osteoblast proliferation through activation of MAPK/ERK. Lasers Med Sci 25:559–569. CrossRefPubMedGoogle Scholar
  8. 8.
    Renno ACM, Donnell PONA, Laakso EL (2010) The effects of laser irradiation on osteoblast and osteosarcoma cell proliferation and differentiation in vitro. Photomed Laser Surg 25(4):275–280. CrossRefGoogle Scholar
  9. 9.
    Mackie EJ (2003) Osteoblasts: novel roles in orchestration of skeletal architecture. Int J Biochem Cell Biol 35:1301–1305CrossRefPubMedGoogle Scholar
  10. 10.
    Dimitriou R, Jones E, McGonagle D, Giannoudis PV (2011) Bone regeneration: current concepts and future directions. BMC Med 31(9):66. CrossRefGoogle Scholar
  11. 11.
    Harris SA, Enger JR, Riggs BL, Spelsberg TC (1995) Development and characterization of a conditionally immortalized human fetal osteoblastic cell line. J Bone Miner Res 10(2):178–186CrossRefPubMedGoogle Scholar
  12. 12.
    Coombe AR, Ho CT, Darendeliler MA, Hunter N, Philips JR, Chapple CC, Yum LW (2001) The effects of low level laser irradiation on osteoblastic cells. Clin Orthod Res 4(1):3–14CrossRefPubMedGoogle Scholar
  13. 13.
    Fujihara NA, Hiraki KRN, Marques MM (2006) Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med 38:332–336CrossRefPubMedGoogle Scholar
  14. 14.
    Xu M, Deng T, Mo F, Deng B, Lam W, Deng P, Zhang X, Liu S (2009) Low-intensity pulsed laser irradiation affects RANKL and OPG mRNA expression in rat calvarial cells. Photomed Laser Surg 27(2):309–315. CrossRefPubMedGoogle Scholar
  15. 15.
    Arisu HD, Türköz E, Bala O (2006) Effects of Nd:Yag laser irradiation on osteoblast cell cultures. Lasers Med Sci 21:175–180. CrossRefPubMedGoogle Scholar
  16. 16.
    Petri AD, Teixeira LN, Crippa GE, Beloti MM, Oliveira PT, Rosa AL (2010) Effects of low-level laser therapy on human osteoblastic cells grown on titanium. Braz Dent J 21(6):491–498CrossRefPubMedGoogle Scholar
  17. 17.
    Chellini F, Sassoli C, Nosi D, Deledda C, Tonelli P, Orlandini SZ, Formigli L, Giannelli M (2010) Low pulse energy Nd:YAG laser irradiation exerts a biostimulative effect on different cells of the oral microenvironment: “an in vitro study”. Lasers Surg Med 42:527–539CrossRefPubMedGoogle Scholar
  18. 18.
    Oliveira DAAP, Oliveira RF, Zangaro RA, Soares CP (2008) Evaluation of low-level laser therapy of osteoblastic cells. Photomed Laser Surg 26(4):401–404. CrossRefPubMedGoogle Scholar
  19. 19.
    Ueda Y, Shimizu N (2003) Effects of pulse frequency of low-level laser therapy (LLLT) on bone nodule formation in rat calvarial cells. J Clin Laser Med Surg 21(5):271–277CrossRefPubMedGoogle Scholar
  20. 20.
    Stein E, Koehn J, Sutter W, Wendtlandt G, Wanschitz F, Thurnher D, Baghestanian M, Turhani D (2008) Initial effects of low-level laser therapy on growth and differentiation of human osteoblast-like cells. Wien Klin Wochenschr 120(3):112–117. CrossRefPubMedGoogle Scholar
  21. 21.
    Bloise N, Ceccarelli G, Minzioni P, Vercellino M, Benedetti L, MGC DA, Imbriani M et al (2013) Investigation of low-level laser therapy potentiality on proliferation and differentiation of human osteoblast-like cells in the absence/presence of osteogenic factors. J Biomed Opt 18(12):128006CrossRefPubMedGoogle Scholar
  22. 22.
    Saracino S, Mozzati M, Martinasso G, Pol R, Canuto RA, Muzio G (2009) Superpulsed laser irradiation increases osteoblast activity via modulation of bone morphogenetic factors. Lasers Surg Med 41:298–304CrossRefPubMedGoogle Scholar
  23. 23.
    Cankaya, Erdem MA, Erdem AP, Erguven M, Aybar B, Kasapoglu C et al (2011) Evaluation of light-emitting diode (LED-660 nm) application over primary osteoblast-like cells on titanium surfaces: an in vitro study. Int J Med Sci 8(7):584–593CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Emes Y, Akça K, Aybar B, Yalçın S, Çavuşoğlu Y, Baysal U, Işsever H, Atalay B, Vural P, Ergüven M, Çehrel MC, Bilir A (2013) Low-level laser therapy vs. pulsed electromagnetic field on neonatal rat calvarial osteoblast-like cells. Lasers Med Sci 28:901–909. CrossRefPubMedGoogle Scholar
  25. 25.
    Ke D, Zhang LY, Yang Z, Xu ZJ (2013) A promising injectable scaffold: the biocompatibility and effect on osteogenic differentiation of mesenchymal stem cells. Biotechnol Bioprocess Eng 18:155–163. CrossRefGoogle Scholar
  26. 26.
    Shen CY, Li L, Feng T, Rong J, Yu M, Lu Q, Li H (2015) Dental pulp stem cells derived conditioned medium promotes angiogenesis in hindlimb ischemia. Tissue Eng Regen Med 12(1):59–68. CrossRefGoogle Scholar
  27. 27.
    Silva APRB, Petri AD, Crippa GE, Stuani AS, Stuani AS, Rosa AD, Stuani MBS (2012) Effect of low-level laser therapy after rapid maxillary expansion on proliferation and differentiation of osteoblastic cells. Lasers Med Sci 27:777–783. CrossRefPubMedGoogle Scholar
  28. 28.
    Schwartz-Filho HO, Reimer AC, Marcantonio C, Marcantonio EM Jr, RAC M (2011) Effects of low-level laser therapy (685 nm) at different doses in osteogenic cell cultures. Lasers Med Sci 26:539–543. CrossRefPubMedGoogle Scholar
  29. 29.
    Danti S, Serino LP, D’Alessandro D, Moscato S, Danti S, Trombi L, Dinucci D, Chiellini F, Pietrabissa A, Lisanti M, Berrettini S, Petrini M (2013) Growing bone tissue-engineered niches with graded osteogenicity: an in vitro method for biomimetic construct assembly. Tissue Eng Part C Methods 19(12).
  30. 30.
    Huertas RD, Luna-Bertos E, Torrecillas JR, Leyva FM, Ruiz C, Martı ́nez OG (2014) Effect and clinical implications of the low-energy diode laser on bone cell proliferation. Biol Res Nurs 16:191–196. CrossRefPubMedGoogle Scholar
  31. 31.
    He YF, Ma Y, Gao C, Zhao G, Zhang LL, Li GF et al (2013) Iron overload inhibits osteoblast biological activity through oxidative stress. Biol Trace Elem Res 152:292–296. CrossRefPubMedGoogle Scholar
  32. 32.
    Kwon H, Lim W, Kim J, Jeon S, Kim S, Karna S et al (2013) Effect of 635 nm irradiation on high glucose-boosted inflammatory responses in LPS-induced MC3T3-E1 cells. Lasers Med Sci 28:717–724. CrossRefPubMedGoogle Scholar
  33. 33.
    Zeng XB, Hu H, Xie LQ, Lan F, Jiang W et al (2012) Magnetic responsive hydroxyapatite composite scaffolds construction for bone defect reparation. Int J Nanomedicine 7:3365–3378CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Ma WH, Liu YJ, Wang W, Zhang YZ (2015) Neuropeptide Y, substance P, and human boné morphogenetic protein 2 stimulate human osteoblast osteogenic activity by enhancing gap junction intercellular communication. Braz J Med Biol Res 48(4):299–307. ISSN 1414-431X
  35. 35.
    Peplow PV, Chung TY, Baxter PD (2010) Laser photobiomodulation of proliferation of cells in culture: a review of human and animal studies. Photomed Laser Surg 28(1):S3–S40. CrossRefPubMedGoogle Scholar
  36. 36.
    Zhao KW, Murray EJB, Murray SS (2015) Spp24 derivatives stimulate a Gi-protein coupled receptor-Erk1/2 signaling pathway and modulate gene expressions in W-20-17 cells. J Cell Biochem 116:767–777CrossRefPubMedGoogle Scholar
  37. 37.
    Wang X, Tian F, Soni SS, Gonzalez-Lima F, Liu H (2016) Interplay between up-regulation of cytochrome-c-oxidase and hemoglobin oxygenation induced by near-infrared laser. Sci Rep 6:30540CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wang Y, Huang YY, Wang Y, Lyu P, Hamblin MR (Feb 2017) Photobiomodulation of human adipose-derived stem cells using 810nm and 980nm lasers operates via different mechanisms of action. Biochim Biophys Acta 1861:441–449CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2018

Authors and Affiliations

  • Alessandro Melo Deana
    • 1
  • Ana Maria de Souza
    • 1
  • Victor Perez Teixeira
    • 1
  • Raquel Agneli Mesquita-Ferrari
    • 1
  • Sandra Kalil Bussadori
    • 1
  • Kristianne Porta Santos Fernandes
    • 1
  1. 1.Universidade Nove de JulhoSão PauloBrazil

Personalised recommendations