Jamaican bioethanol: an environmental and economic life cycle assessment

Abstract

E10 is a blend of 10% bioethanol and 90% gasoline that can be used in the engines of most cars without causing damage. Currently for the E10 blend, Jamaica imports gasoline from Trinidad & Tobago and bioethanol from Brazil because the bioethanol production in Jamaica is at an early stage. However, the country has great potential for bioethanol production. In order to assess the environmental and economic feasibility of bioethanol in Jamaica, this paper presents an economic and environmental life cycle assessment for a case study in Jamaica in two different scenarios. The Baseline Scenario represents the use of E10 in the current conditions in which bioethanol comes from Brazil and gasoline from Trinidad & Tobago. Scenario I represents the use of E10 with bioethanol from Jamaica and gasoline from Trinidad & Tobago. The comparative environmental life cycle assessment revealed that the Baseline Scenario had better results than Scenario I in ten environmental categories. The economic assessment results in Scenario I were 7% higher than in the Baseline Scenario. Hence, the current context (Baseline Scenario) was identified as the scenario with the best economic performance. Therefore, the current situation in Jamaica (Baseline Scenario) scored better results than Scenario I from an environmental and an economical point of views. It is recommended to increase the bagasse cogeneration of Scenario I to lower the environmental impacts. To improve their productivity, it is necessary to improve the Jamaican sugar infrastructure by combining molasses and cane juice to produce bioethanol.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data availability

LCI available in the Supplementary material.

References

  1. Amorim HV, Lopes ML, de Castro Oliveira JV, Buckeridge MS, Goldman GH (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91(5):1267

    CAS  Article  Google Scholar 

  2. Azapagic A, Stichnothe H (2011) Life cycle sustainability assessment of biofuels. Handbook of biofuels production. Elsevier, Amsterdam, pp 37–60

    Google Scholar 

  3. Ballesteros M, Manzanares P (2019) Liquid biofuels. The role of bioenergy in the bioeconomy. Elsevier, Amsterdam, pp 113–144

    Google Scholar 

  4. Basu P (2018) Biomass gasification, pyrolysis and torrefaction: practical design and theory. Academic Press, Cambridge

    Google Scholar 

  5. Caldeira-Pires A, Da Luz SM, Palma-Rojas S, Rodrigues TO, Silverio VC, Vilela F, Barbosa P, Alves AM (2013) Sustainability of the biorefinery industry for fuel production. Energies 6(1):329–350

    CAS  Article  Google Scholar 

  6. Caldeira-Pires A, Benoist A, Da Luz SM, Silverio VC, Silveira CM, Machado FS (2018) Implications of removing straw from soil for bioenergy: an LCA of ethanol production using total sugarcane biomass. J Clean Prod 181:249–259

    CAS  Article  Google Scholar 

  7. Castillo EF, Larrahondo JE, Gómez AL, Socarrás JI (2010) The Colombian experience in the production of bioethanol for transport use. Proc Int Soc Sugar Cane Technol 27:1–9

    Google Scholar 

  8. Chen B, Xiong R, Li H, Sun Q, Yang J (2019) Pathways for sustainable energy transition. J Clean Prod 228:1564–1571. https://doi.org/10.1016/J.JCLEPRO.2019.04.372

    Article  Google Scholar 

  9. Contreras AM, Rosa E, Pérez M, Van Langenhove H, Dewulf J (2009) Comparative life cycle assessment of four alternatives for using by-products of cane sugar production. J Clean Prod 17(8):772–779

    Article  Google Scholar 

  10. Contreras-Lisperguer R, Batuecas E, Mayo C, Díaz R, Pérez FJ, Springer C (2018) Sustainability assessment of electricity cogeneration from sugarcane bagasse in Jamaica. J Clean Prod 200:390–401. https://doi.org/10.1016/j.jclepro.2018.07.322

    Article  Google Scholar 

  11. Council, W. E. (2016). World Energy Resources Bioenergy | 2016. Retrieved from https://www.worldenergy.org/wp-content/uploads/2017/03/WEResources_Bioenergy_2016.pdf

  12. de la Rúa Lope C, Lechón Y (2017) Life cycle assessment of biofuel production. In: Riazi MR, Chiaramonti D (eds) Biofuels production and processing technology. CRC Press, pp 587–612

  13. de Luca AI, Iofrida N, Leskinen P, Stillitano T, Falcone G, Strano A, Gulisano G (2017) Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: Insights from a systematic and critical review. Sci Total Environ 595:352–370. https://doi.org/10.1016/j.scitotenv.2017.03.284

    CAS  Article  Google Scholar 

  14. de Oliveira Bordonal R, Carvalho JLN, Lal R, de Figueiredo EB, de Oliveira BG, La Scala N (2018) Sustainability of sugarcane production in Brazil. A Rev Agron Sustain Dev 38(2):13

    Article  Google Scholar 

  15. Ekener E, Hansson J, Larsson A, Peck P (2018) Developing life cycle sustainability assessment methodology by applying values-based sustainability weighting—tested on biomass based and fossil transportation fuels. J Clean Prod 181:337–351. https://doi.org/10.1016/j.jclepro.2018.01.211

    Article  Google Scholar 

  16. EPA (1996a) AP 42 emission factors bagasse combustion in sugar mills. In: Ap 42, compilation of air pollutant emission factors, volume 1 stationary point and area sources. Retrieved from https://www3.epa.gov/ttnchie1/ap42/ch01/final/c01s08.pdf

  17. EPA, (1996b) AP 42 emission factors diesel. In: Compilation of air pollutant emission factors, volume I: stationary point and area sources, AP-42. Retrieved from http://www.epa.gov/ttn/chief/ap42/ch03/index.html

  18. EPA, (2009) AP 42 emission factors pesticides. Retrieved from https://www3.epa.gov/ttn/chief/ap42/ch09/final/c9s02-2.pdf

  19. European Parliament (2009) Directive 2009/28/EC of the European Parliament and of the council of 23 April 2009. Off J Eur Union 140(16):16–62. https://doi.org/10.3000/17252555.L_2009.140.eng

    Article  Google Scholar 

  20. Favretto N, Stringer LC, Buckeridge MS, Afionis S (2017) Policy and diplomacy in the production of second generation ethanol in Brazil: international relations with the EU, the USA and Africa. Advances of basic science for second generation bioethanol from sugarcane. Springer, Berlin, pp 197–212

    Google Scholar 

  21. Fokaides PA, Christoforou E (2016) Life cycle sustainability assessment of biofuels. Handbook of biofuels production. Elsevier, Amsterdam, pp 41–60

    Google Scholar 

  22. Foteinis S, Kouloumpis V, Tsoutsos T (2011) Life cycle analysis for bioethanol production from sugar beet crops in Greece. Energy Policy 39(9):4834–4841. https://doi.org/10.1016/J.ENPOL.2011.06.036

    Article  Google Scholar 

  23. Gabisa EW, Bessou C, Gheewala SH (2019) Life cycle environmental performance and energy balance of ethanol production based on sugarcane molasses in Ethiopia. J Clean Prod 234:43–53. https://doi.org/10.1016/J.JCLEPRO.2019.06.199

    CAS  Article  Google Scholar 

  24. George PAO, Eras JJC, Gutierrez AS, Hens L, Vandecasteele C (2010) Residue from sugarcane juice filtration (filter cake): energy use at the sugar factory. Waste Biomass Valoriz 1(4):407–413

    Article  Google Scholar 

  25. Gnansounou E, Vaskan P, Pachón ER (2015) Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries. Biores Technol 196:364–375

    CAS  Article  Google Scholar 

  26. Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, & Van Zelm R (2009) ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, 1

  27. Halog A, Manik Y (2011) Advancing integrated systems modelling framework for life cycle sustainability assessment. Sustainability 3(2):469–499

    Article  Google Scholar 

  28. Hunkeler D, Lichtenvort K, Rebitzer G (2008) Environmental life cycle costing. CRC Press, Boca Raton

    Google Scholar 

  29. IEA (2016) World energy statistics 2016. In: World energy statistics 2016. Retrieved from www.iea.org/statistics/

  30. INMETRO (2014) Veículos leves. Retrieved 28 Dec 2018, from http://estaticog1.globo.com/2014/01/20/veiculos_leves_2014.pdf

  31. Iriarte A, Rieradevall J, Gabarrell X (2010) Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. J Clean Prod 18(4):336–345

    CAS  Article  Google Scholar 

  32. Jeswani HK, Azapagic A (2012) Life cycle sustainability assessment of second generation biodiesel. Advances in biodiesel production. Elsevier, Amsterdam, pp 13–31

    Google Scholar 

  33. Jonker JGG, Van Der Hilst F, Junginger HM, Cavalett O, Chagas MF, Faaij APC (2015) Outlook for ethanol production costs in Brazil up to 2030, for different biomass crops and industrial technologies. Appl Energy 147:593–610

    Article  Google Scholar 

  34. Kloepffer W (2008) Life cycle sustainability assessment of products. The Int J Life Cycle Assess 13(2):89

    Article  Google Scholar 

  35. Kubiak R, Burkle L, Cousins I, Hourdakis A, Jarvis T, Jene B, Koch W, Kreuger J, Maier W, Millet M, Reinert W (2008) Pesticides in air: considerations for exposure assessment. Report of the FOCUS working group on pesticides in air, EC document reference SANCO/10553/2006 Rev, 2

  36. Leah C, Hanna L (2018) Politics in the US energy transition: case studies of solar, wind, biofuels and electric vehicles policy. Energy Policy 113:76–86

  37. Lopes ML, de Lima Paulillo SC, Godoy A, Cherubin RA, Lorenzi MS, Giometti FHC, de Amorim HV (2016) Ethanol production in Brazil: a bridge between science and industry. Braz J Microbiol 47:64–76. https://doi.org/10.1016/J.BJM.2016.10.003ML

    CAS  Article  Google Scholar 

  38. Luo L, Van Der Voet E, Huppes G (2009) Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil. Renew Sustain Energy Rev 13(6–7):1613–1619

    CAS  Article  Google Scholar 

  39. Mahbub N, Oyedun AO, Zhang H, Kumar A, Poganietz WR (2019) A life cycle sustainability assessment (LCSA) of oxymethylene ether as a diesel additive produced from forest biomass. Int J Life Cycle Assess 24(5):881–899. https://doi.org/10.1007/s11367-018-1529-6

    CAS  Article  Google Scholar 

  40. Ministry of Energy and Mining (2010) National Biofuels Policy 2010–2030, Retrieved (Oct) from http://www.pcj.com/dnn/Portals/0/Documents/National_Renewable_Energy_Policy_August_26_2010.pdf

  41. Ministry of Energy and Mining (2011) Biomass feedstock and cogeneration in the sugar industry of jamaica FWC1-138. Retrieved from https://www.mset.gov.jm/sites/default/files/pdf/Biomass Feedstock and cogeneration in the sugar industry_0.pdf

  42. Ministry of Mining and Energy (2010) Presentation by ministry of energy and mining to the sugarcane industry commission of inquiry. Retrieved 6 July 2019 from http://www.moa.gov.jm/sugar_inquiry/data/PS-MEM_SugarBiofuels16-07-2010.ppt

  43. Nemecek T, Kägi T, & Blaser S (2007) Life cycle inventories of agricultural production systems. Final Report ecoinvent v2. 0 No. 15

  44. Pesonen H-L, Horn S (2013) Evaluating the sustainability SWOT as a streamlined tool for life cycle sustainability assessment. Int J Life Cycle Assess 18(9):1780–1792

    Article  Google Scholar 

  45. Petrojam (n.d.-a) Price Index

  46. Petrojam (n.d.-b) Price Index. Retrieved 26 Jan 2019, from http://www.petrojam.com/price-index?field_price_date_value

  47. Raman JK, Gnansounou E (2015) LCA of bioethanol and furfural production from vetiver. Bioresour Technol 185:202–210

    CAS  Article  Google Scholar 

  48. Rathnayake M, Chaireongsirikul T, Svangariyaskul A, Lawtrakul L, Toochinda P (2018) Process simulation based life cycle assessment for bioethanol production from cassava, cane molasses, and rice straw. J Clean Prod 190:24–35

    CAS  Article  Google Scholar 

  49. Rico JAP, Mercedes SSP, Sauer IL (2010) Genesis and consolidation of the Brazilian bioethanol: a review of policies and incentive mechanisms. Renew Sustain Energy Rev 14(7):1874–1887

    CAS  Article  Google Scholar 

  50. Rodríguez AG (2011) Investigación y desarrollo e innovación para el desarrollo de los biocombustibles en América Latina y el Caribe

  51. Roy P, Tokuyasu K, Orikasa T, Nakamura N, Shiina T (2012) A review of life cycle assessment (LCA) of bioethanol from lignocellulosic biomass. Jpn Agric Res Q JARQ 46(1):41–57

    CAS  Article  Google Scholar 

  52. Saga K, Imou K, Yokoyama S, Minowa T (2010) Net energy analysis of bioethanol production system from high-yield rice plant in Japan. Appl Energy 87(7):2164–2168

    CAS  Article  Google Scholar 

  53. Sala S, Farioli F, Zamagni A (2013) Life cycle sustainability assessment in the context of sustainability science progress (part 2). Int J Life Cycle Assess 18(9):1686–1697. https://doi.org/10.1007/s11367-012-0509-5

    CAS  Article  Google Scholar 

  54. Sala S, Vasta A, Mancini L, Dewulf J, Rosenbaum E (2015) Social life cycle assessment-state of the art and challenges for supporting product policies. https://doi.org/10.2788/253715

  55. Sharma A, Strezov V (2017) Life cycle environmental and economic impact assessment of alternative transport fuels and power-train technologies. Energy 133:1132–1141

    Article  Google Scholar 

  56. Silalertruksa T, Gheewala SH (2009) Environmental sustainability assessment of bio-ethanol production in Thailand. Energy 34(11):1933–1946

    CAS  Article  Google Scholar 

  57. Souza A, Watanabe MDB, Cavalett O, Ugaya CML, Bonomi A (2018) Social life cycle assessment of first and second-generation ethanol production technologies in Brazil. Int J Life Cycle Assess 23(3):617–628. https://doi.org/10.1007/s11367-016-1112-y

    CAS  Article  Google Scholar 

  58. Subramanian K, Chau CK, Yung WKC (2018) Relevance and feasibility of the existing social LCA methods and case studies from a decision-making perspective. J Clean Prod 171:690–703. https://doi.org/10.1016/j.jclepro.2017.10.006

    Article  Google Scholar 

  59. Suppen N, Rosa E, Naranjo C, & Kulay L (2013) Guía de biocombustibles. Centro de Análisis de Ciclo de Vida y Diseño Sustentable

  60. Swarr TE, Hunkeler D, Klöpffer W, Pesonen H-L, Ciroth A, Brent AC, Pagan R (2011) Environmental life-cycle costing: a code of practice. Springer, Berlin

    Google Scholar 

  61. Technical Committe 207/SC5 (2006a) ISO 14040:2006 Environmental management—Life cycle assessment—Principles and framework

  62. Technical Committe 207/SC5 (2006b) ISO 14044:2006 Environmental management—Life cycle assessment—Requirements and guidelines.

  63. United States Energy Information Administration (2011) Today in energy. Retrieved 26 Dec 2018, from https://www.eia.gov/todayinenergy/detail.php?id=3670

  64. United States Energy Information Administration (2018) Fuel ethanol production 2015. Retrieved 30 Nov 2018, from https://www.eia.gov/beta/international/rankings/#?iso=JAM&cy=2015&pid=80&ug=8&tl_id=79-A

  65. Velaquez S, Moreira JR, Santos SA, & Coelho ST (2011) Project BEST—Bioethanol for sustainable transport—and the public policies of encouragement to ethanol usage. In: Electrical and control engineering (ICECE), 2011 international conference on, 4870–4873. IEEE

  66. Walter A & Dolzan P (2014) Country report Brazil. In: IEA Bioenergy Task 40

  67. Weidema BP, Bauer C, Hischier R, Mutel C, Nemecek T, Reinhard J, Wernet G (2013) Overview and methodology: data quality guideline for the ecoinvent database version 3

Download references

Acknowledgements

Authors gratefully acknowledge Organization of American States (OAS) for funding this research work.

Funding

Organization of American States (OAS) funded this research work. This bioethanol study was conducted in Jamaica within the framework of the Memorandum of Understanding between the USA and Brazil to promote cooperation in biofuels.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. Batuecas.

Ethics declarations

Conflict of interest

No conflicts of interest/competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 903 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Batuecas, E., Contreras-Lisperguer, R., Mayo, C. et al. Jamaican bioethanol: an environmental and economic life cycle assessment. Clean Techn Environ Policy (2021). https://doi.org/10.1007/s10098-021-02037-8

Download citation

Keywords

  • Life cycle costing (LCC)
  • Life cycle assessment (LCA)
  • Biofuel
  • Clean technology
  • Sustainable development