Skip to main content
Log in

Jamaican bioethanol: an environmental and economic life cycle assessment

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

E10 is a blend of 10% bioethanol and 90% gasoline that can be used in the engines of most cars without causing damage. Currently for the E10 blend, Jamaica imports gasoline from Trinidad & Tobago and bioethanol from Brazil because the bioethanol production in Jamaica is at an early stage. However, the country has great potential for bioethanol production. In order to assess the environmental and economic feasibility of bioethanol in Jamaica, this paper presents an economic and environmental life cycle assessment for a case study in Jamaica in two different scenarios. The Baseline Scenario represents the use of E10 in the current conditions in which bioethanol comes from Brazil and gasoline from Trinidad & Tobago. Scenario I represents the use of E10 with bioethanol from Jamaica and gasoline from Trinidad & Tobago. The comparative environmental life cycle assessment revealed that the Baseline Scenario had better results than Scenario I in ten environmental categories. The economic assessment results in Scenario I were 7% higher than in the Baseline Scenario. Hence, the current context (Baseline Scenario) was identified as the scenario with the best economic performance. Therefore, the current situation in Jamaica (Baseline Scenario) scored better results than Scenario I from an environmental and an economical point of views. It is recommended to increase the bagasse cogeneration of Scenario I to lower the environmental impacts. To improve their productivity, it is necessary to improve the Jamaican sugar infrastructure by combining molasses and cane juice to produce bioethanol.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

LCI available in the Supplementary material.

References

  • Amorim HV, Lopes ML, de Castro Oliveira JV, Buckeridge MS, Goldman GH (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91(5):1267

    Article  CAS  Google Scholar 

  • Azapagic A, Stichnothe H (2011) Life cycle sustainability assessment of biofuels. Handbook of biofuels production. Elsevier, Amsterdam, pp 37–60

    Chapter  Google Scholar 

  • Ballesteros M, Manzanares P (2019) Liquid biofuels. The role of bioenergy in the bioeconomy. Elsevier, Amsterdam, pp 113–144

    Chapter  Google Scholar 

  • Basu P (2018) Biomass gasification, pyrolysis and torrefaction: practical design and theory. Academic Press, Cambridge

    Google Scholar 

  • Caldeira-Pires A, Da Luz SM, Palma-Rojas S, Rodrigues TO, Silverio VC, Vilela F, Barbosa P, Alves AM (2013) Sustainability of the biorefinery industry for fuel production. Energies 6(1):329–350

    Article  CAS  Google Scholar 

  • Caldeira-Pires A, Benoist A, Da Luz SM, Silverio VC, Silveira CM, Machado FS (2018) Implications of removing straw from soil for bioenergy: an LCA of ethanol production using total sugarcane biomass. J Clean Prod 181:249–259

    Article  CAS  Google Scholar 

  • Castillo EF, Larrahondo JE, Gómez AL, Socarrás JI (2010) The Colombian experience in the production of bioethanol for transport use. Proc Int Soc Sugar Cane Technol 27:1–9

    Google Scholar 

  • Chen B, Xiong R, Li H, Sun Q, Yang J (2019) Pathways for sustainable energy transition. J Clean Prod 228:1564–1571. https://doi.org/10.1016/J.JCLEPRO.2019.04.372

    Article  Google Scholar 

  • Contreras AM, Rosa E, Pérez M, Van Langenhove H, Dewulf J (2009) Comparative life cycle assessment of four alternatives for using by-products of cane sugar production. J Clean Prod 17(8):772–779

    Article  Google Scholar 

  • Contreras-Lisperguer R, Batuecas E, Mayo C, Díaz R, Pérez FJ, Springer C (2018) Sustainability assessment of electricity cogeneration from sugarcane bagasse in Jamaica. J Clean Prod 200:390–401. https://doi.org/10.1016/j.jclepro.2018.07.322

    Article  Google Scholar 

  • Council, W. E. (2016). World Energy Resources Bioenergy | 2016. Retrieved from https://www.worldenergy.org/wp-content/uploads/2017/03/WEResources_Bioenergy_2016.pdf

  • de la Rúa Lope C, Lechón Y (2017) Life cycle assessment of biofuel production. In: Riazi MR, Chiaramonti D (eds) Biofuels production and processing technology. CRC Press, pp 587–612

  • de Luca AI, Iofrida N, Leskinen P, Stillitano T, Falcone G, Strano A, Gulisano G (2017) Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: Insights from a systematic and critical review. Sci Total Environ 595:352–370. https://doi.org/10.1016/j.scitotenv.2017.03.284

    Article  CAS  Google Scholar 

  • de Oliveira Bordonal R, Carvalho JLN, Lal R, de Figueiredo EB, de Oliveira BG, La Scala N (2018) Sustainability of sugarcane production in Brazil. A Rev Agron Sustain Dev 38(2):13

    Article  Google Scholar 

  • Ekener E, Hansson J, Larsson A, Peck P (2018) Developing life cycle sustainability assessment methodology by applying values-based sustainability weighting—tested on biomass based and fossil transportation fuels. J Clean Prod 181:337–351. https://doi.org/10.1016/j.jclepro.2018.01.211

    Article  Google Scholar 

  • EPA (1996a) AP 42 emission factors bagasse combustion in sugar mills. In: Ap 42, compilation of air pollutant emission factors, volume 1 stationary point and area sources. Retrieved from https://www3.epa.gov/ttnchie1/ap42/ch01/final/c01s08.pdf

  • EPA, (1996b) AP 42 emission factors diesel. In: Compilation of air pollutant emission factors, volume I: stationary point and area sources, AP-42. Retrieved from http://www.epa.gov/ttn/chief/ap42/ch03/index.html

  • EPA, (2009) AP 42 emission factors pesticides. Retrieved from https://www3.epa.gov/ttn/chief/ap42/ch09/final/c9s02-2.pdf

  • European Parliament (2009) Directive 2009/28/EC of the European Parliament and of the council of 23 April 2009. Off J Eur Union 140(16):16–62. https://doi.org/10.3000/17252555.L_2009.140.eng

    Article  Google Scholar 

  • Favretto N, Stringer LC, Buckeridge MS, Afionis S (2017) Policy and diplomacy in the production of second generation ethanol in Brazil: international relations with the EU, the USA and Africa. Advances of basic science for second generation bioethanol from sugarcane. Springer, Berlin, pp 197–212

    Chapter  Google Scholar 

  • Fokaides PA, Christoforou E (2016) Life cycle sustainability assessment of biofuels. Handbook of biofuels production. Elsevier, Amsterdam, pp 41–60

    Google Scholar 

  • Foteinis S, Kouloumpis V, Tsoutsos T (2011) Life cycle analysis for bioethanol production from sugar beet crops in Greece. Energy Policy 39(9):4834–4841. https://doi.org/10.1016/J.ENPOL.2011.06.036

    Article  Google Scholar 

  • Gabisa EW, Bessou C, Gheewala SH (2019) Life cycle environmental performance and energy balance of ethanol production based on sugarcane molasses in Ethiopia. J Clean Prod 234:43–53. https://doi.org/10.1016/J.JCLEPRO.2019.06.199

    Article  CAS  Google Scholar 

  • George PAO, Eras JJC, Gutierrez AS, Hens L, Vandecasteele C (2010) Residue from sugarcane juice filtration (filter cake): energy use at the sugar factory. Waste Biomass Valoriz 1(4):407–413

    Article  Google Scholar 

  • Gnansounou E, Vaskan P, Pachón ER (2015) Comparative techno-economic assessment and LCA of selected integrated sugarcane-based biorefineries. Biores Technol 196:364–375

    Article  CAS  Google Scholar 

  • Goedkoop M, Heijungs R, Huijbregts M, De Schryver A, Struijs J, & Van Zelm R (2009) ReCiPe 2008. A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level, 1

  • Halog A, Manik Y (2011) Advancing integrated systems modelling framework for life cycle sustainability assessment. Sustainability 3(2):469–499

    Article  Google Scholar 

  • Hunkeler D, Lichtenvort K, Rebitzer G (2008) Environmental life cycle costing. CRC Press, Boca Raton

    Book  Google Scholar 

  • IEA (2016) World energy statistics 2016. In: World energy statistics 2016. Retrieved from www.iea.org/statistics/

  • INMETRO (2014) Veículos leves. Retrieved 28 Dec 2018, from http://estaticog1.globo.com/2014/01/20/veiculos_leves_2014.pdf

  • Iriarte A, Rieradevall J, Gabarrell X (2010) Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. J Clean Prod 18(4):336–345

    Article  CAS  Google Scholar 

  • Jeswani HK, Azapagic A (2012) Life cycle sustainability assessment of second generation biodiesel. Advances in biodiesel production. Elsevier, Amsterdam, pp 13–31

    Chapter  Google Scholar 

  • Jonker JGG, Van Der Hilst F, Junginger HM, Cavalett O, Chagas MF, Faaij APC (2015) Outlook for ethanol production costs in Brazil up to 2030, for different biomass crops and industrial technologies. Appl Energy 147:593–610

    Article  Google Scholar 

  • Kloepffer W (2008) Life cycle sustainability assessment of products. The Int J Life Cycle Assess 13(2):89

    Article  Google Scholar 

  • Kubiak R, Burkle L, Cousins I, Hourdakis A, Jarvis T, Jene B, Koch W, Kreuger J, Maier W, Millet M, Reinert W (2008) Pesticides in air: considerations for exposure assessment. Report of the FOCUS working group on pesticides in air, EC document reference SANCO/10553/2006 Rev, 2

  • Leah C, Hanna L (2018) Politics in the US energy transition: case studies of solar, wind, biofuels and electric vehicles policy. Energy Policy 113:76–86

  • Lopes ML, de Lima Paulillo SC, Godoy A, Cherubin RA, Lorenzi MS, Giometti FHC, de Amorim HV (2016) Ethanol production in Brazil: a bridge between science and industry. Braz J Microbiol 47:64–76. https://doi.org/10.1016/J.BJM.2016.10.003ML

    Article  CAS  Google Scholar 

  • Luo L, Van Der Voet E, Huppes G (2009) Life cycle assessment and life cycle costing of bioethanol from sugarcane in Brazil. Renew Sustain Energy Rev 13(6–7):1613–1619

    Article  CAS  Google Scholar 

  • Mahbub N, Oyedun AO, Zhang H, Kumar A, Poganietz WR (2019) A life cycle sustainability assessment (LCSA) of oxymethylene ether as a diesel additive produced from forest biomass. Int J Life Cycle Assess 24(5):881–899. https://doi.org/10.1007/s11367-018-1529-6

    Article  CAS  Google Scholar 

  • Ministry of Energy and Mining (2010) National Biofuels Policy 2010–2030, Retrieved (Oct) from http://www.pcj.com/dnn/Portals/0/Documents/National_Renewable_Energy_Policy_August_26_2010.pdf

  • Ministry of Energy and Mining (2011) Biomass feedstock and cogeneration in the sugar industry of jamaica FWC1-138. Retrieved from https://www.mset.gov.jm/sites/default/files/pdf/Biomass Feedstock and cogeneration in the sugar industry_0.pdf

  • Ministry of Mining and Energy (2010) Presentation by ministry of energy and mining to the sugarcane industry commission of inquiry. Retrieved 6 July 2019 from http://www.moa.gov.jm/sugar_inquiry/data/PS-MEM_SugarBiofuels16-07-2010.ppt

  • Nemecek T, Kägi T, & Blaser S (2007) Life cycle inventories of agricultural production systems. Final Report ecoinvent v2. 0 No. 15

  • Pesonen H-L, Horn S (2013) Evaluating the sustainability SWOT as a streamlined tool for life cycle sustainability assessment. Int J Life Cycle Assess 18(9):1780–1792

    Article  Google Scholar 

  • Petrojam (n.d.-a) Price Index

  • Petrojam (n.d.-b) Price Index. Retrieved 26 Jan 2019, from http://www.petrojam.com/price-index?field_price_date_value

  • Raman JK, Gnansounou E (2015) LCA of bioethanol and furfural production from vetiver. Bioresour Technol 185:202–210

    Article  CAS  Google Scholar 

  • Rathnayake M, Chaireongsirikul T, Svangariyaskul A, Lawtrakul L, Toochinda P (2018) Process simulation based life cycle assessment for bioethanol production from cassava, cane molasses, and rice straw. J Clean Prod 190:24–35

    Article  CAS  Google Scholar 

  • Rico JAP, Mercedes SSP, Sauer IL (2010) Genesis and consolidation of the Brazilian bioethanol: a review of policies and incentive mechanisms. Renew Sustain Energy Rev 14(7):1874–1887

    Article  CAS  Google Scholar 

  • Rodríguez AG (2011) Investigación y desarrollo e innovación para el desarrollo de los biocombustibles en América Latina y el Caribe

  • Roy P, Tokuyasu K, Orikasa T, Nakamura N, Shiina T (2012) A review of life cycle assessment (LCA) of bioethanol from lignocellulosic biomass. Jpn Agric Res Q JARQ 46(1):41–57

    Article  CAS  Google Scholar 

  • Saga K, Imou K, Yokoyama S, Minowa T (2010) Net energy analysis of bioethanol production system from high-yield rice plant in Japan. Appl Energy 87(7):2164–2168

    Article  CAS  Google Scholar 

  • Sala S, Farioli F, Zamagni A (2013) Life cycle sustainability assessment in the context of sustainability science progress (part 2). Int J Life Cycle Assess 18(9):1686–1697. https://doi.org/10.1007/s11367-012-0509-5

    Article  CAS  Google Scholar 

  • Sala S, Vasta A, Mancini L, Dewulf J, Rosenbaum E (2015) Social life cycle assessment-state of the art and challenges for supporting product policies. https://doi.org/10.2788/253715

  • Sharma A, Strezov V (2017) Life cycle environmental and economic impact assessment of alternative transport fuels and power-train technologies. Energy 133:1132–1141

    Article  Google Scholar 

  • Silalertruksa T, Gheewala SH (2009) Environmental sustainability assessment of bio-ethanol production in Thailand. Energy 34(11):1933–1946

    Article  CAS  Google Scholar 

  • Souza A, Watanabe MDB, Cavalett O, Ugaya CML, Bonomi A (2018) Social life cycle assessment of first and second-generation ethanol production technologies in Brazil. Int J Life Cycle Assess 23(3):617–628. https://doi.org/10.1007/s11367-016-1112-y

    Article  CAS  Google Scholar 

  • Subramanian K, Chau CK, Yung WKC (2018) Relevance and feasibility of the existing social LCA methods and case studies from a decision-making perspective. J Clean Prod 171:690–703. https://doi.org/10.1016/j.jclepro.2017.10.006

    Article  Google Scholar 

  • Suppen N, Rosa E, Naranjo C, & Kulay L (2013) Guía de biocombustibles. Centro de Análisis de Ciclo de Vida y Diseño Sustentable

  • Swarr TE, Hunkeler D, Klöpffer W, Pesonen H-L, Ciroth A, Brent AC, Pagan R (2011) Environmental life-cycle costing: a code of practice. Springer, Berlin

    Google Scholar 

  • Technical Committe 207/SC5 (2006a) ISO 14040:2006 Environmental management—Life cycle assessment—Principles and framework

  • Technical Committe 207/SC5 (2006b) ISO 14044:2006 Environmental management—Life cycle assessment—Requirements and guidelines.

  • United States Energy Information Administration (2011) Today in energy. Retrieved 26 Dec 2018, from https://www.eia.gov/todayinenergy/detail.php?id=3670

  • United States Energy Information Administration (2018) Fuel ethanol production 2015. Retrieved 30 Nov 2018, from https://www.eia.gov/beta/international/rankings/#?iso=JAM&cy=2015&pid=80&ug=8&tl_id=79-A

  • Velaquez S, Moreira JR, Santos SA, & Coelho ST (2011) Project BEST—Bioethanol for sustainable transport—and the public policies of encouragement to ethanol usage. In: Electrical and control engineering (ICECE), 2011 international conference on, 4870–4873. IEEE

  • Walter A & Dolzan P (2014) Country report Brazil. In: IEA Bioenergy Task 40

  • Weidema BP, Bauer C, Hischier R, Mutel C, Nemecek T, Reinhard J, Wernet G (2013) Overview and methodology: data quality guideline for the ecoinvent database version 3

Download references

Acknowledgements

Authors gratefully acknowledge Organization of American States (OAS) for funding this research work.

Funding

Organization of American States (OAS) funded this research work. This bioethanol study was conducted in Jamaica within the framework of the Memorandum of Understanding between the USA and Brazil to promote cooperation in biofuels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Batuecas.

Ethics declarations

Conflict of interest

No conflicts of interest/competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 903 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batuecas, E., Contreras-Lisperguer, R., Mayo, C. et al. Jamaican bioethanol: an environmental and economic life cycle assessment. Clean Techn Environ Policy 23, 1415–1430 (2021). https://doi.org/10.1007/s10098-021-02037-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-021-02037-8

Keywords

Navigation