Advertisement

Clean Technologies and Environmental Policy

, Volume 19, Issue 3, pp 897–906 | Cite as

Silver nanoparticles from AgNO3–affinin complex synthesized by an ecofriendly route: chitosan-based electrospun composite production

  • Fernando Bedolla-Cázares
  • Perla E. Hernández-Marcelo
  • Mario A. Gómez-Hurtado
  • Gabriela Rodríguez-García
  • Rosa E. del Río
  • Yliana López-Castro
  • Juan Pablo García-Merinos
  • J. Martín Torres-Valencia
  • J. Betzabe González-Campos
Original Paper

Abstract

A novel nanofibrous chitosan-based composite containing affinin and silver nanoparticles is obtained by electrospinning. Silver nanoparticles are synthesized by sunlight photoreduction of the metal complex [Ag2–(affinin)](NO3)2 in polymeric solution, via a green one-pot methodology, wherein chitosan and affinin act as reducing, dispersing and stabilizing agent.

Keywords

Biocomposite Silver nanoparticles Metal complex Chitosan nanofibers Sunlight photoreduction 

Notes

Acknowledgments

The authors would like to thank the National Council of Science and Technology of México (CONACyT) and the Scientific Research Council of the Universidad Michoacana de San Nicolas de Hidalgo for financial support.

References

  1. Ahamed S, Ahmag M, Swami BL, Ikram S (2015) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28CrossRefGoogle Scholar
  2. Ajalloueian F, Tavanai H, Hilborn J, Donzel-Gargand O, Leifer K, Wickham A, Arpanaei A (2014) Emulsion electrospinning as an approach to fabricate PLGA/chitosan nanofibers for biomedical applications. BioMed Res Int. doi: 10.1155/2014/475280 Google Scholar
  3. Arriaga-Alba M, Rios MY, Déciga-Campos M (2013) Antimutagenic properties of affinin isolated from Heliopsis longipes extract. Pharm Biol 51:1035–1039CrossRefGoogle Scholar
  4. Bogle KA, Dhole SD, Bhoraskar VN (2006) Silver nanoparticles: synthesis and size control by electron irradiation. Nanotechnology 17:3204–3208CrossRefGoogle Scholar
  5. Calle J, Rivera A, Reguero MT, Del Rio RE, Nathan PJ (1988) Estudio del espilantal usando técnicas de resonancia magnética nuclear en dos dimensiones. Rev Latinoam Quim 19:94–97Google Scholar
  6. Cariño-Cortés R, Gayosso-De-Lucio JA, Ortiz MI, Sánchez-Gutiérrez M, García-Reyna PB, Cilia-López VG, Pérez-Hernández N, Moreno E, Ponce-Monter H (2010) Antinociceptive, genotoxic and histopathological study of Heliopsis longipes S.F. Blake in mice. J Ethnopharmacol 130:216–221CrossRefGoogle Scholar
  7. Chadha R, Das A, Maiti N, Kapoor S (2014) Synthesis of silver nanoparticles: effects of anionic ligands on formation and catalytic activity. Mater Chem Phys 148:1124–1130CrossRefGoogle Scholar
  8. Charernsriwilaiwat N, Rojanarata T, Ngawhirunpat T, Sukma M, Opanasopit P (2013) Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts. Int J Pharm 452:333–343CrossRefGoogle Scholar
  9. Das AK, Marwal A, Sain D, Pareek V (2015) One-step green synthesis ans characterization of plant protein-coated mercuric oxide (HgO) nanoparticles: antimicrobial studies. Int Nano Lett 5:125–132CrossRefGoogle Scholar
  10. Déciga-Campos M, Rios MY, Aguilar-Guadarrama AB (2010) Antinociceptive effect of Heliopsis longipes extract and affinin in mice. Plant Med 76:665–670CrossRefGoogle Scholar
  11. Haider S, Park SY (2009) Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. J Memb Sci 328:90–96CrossRefGoogle Scholar
  12. Hernández I, Márquez L, Dieguez R, Delporte C, Prieto S, Molina-Torres J, Garrido GJ (2009) Anti-inflammatory effects of ethanolic extract and alkamides-derived from Heliopsis longipes roots. J Ethnopharmacol 124:649–652CrossRefGoogle Scholar
  13. Jin G, Prabhakaran MP, Kai D, Annamalai SK, Arunachalam KD, Ramakrisshna S (2013) Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials 34:724–734CrossRefGoogle Scholar
  14. Jitin PM, Tarana R, Deepika R, Pandima DM, Sastry TP (2014) Preparation and characterization of wound healing composites of chitosan, Aloe vera and Calendula officinalis—A comparative study. Am J Phytomed Clin Ther 12:061–076Google Scholar
  15. Jung KH, Huh MW, Meng W, Yaun J, Hyun SH, Bae JS (2007) Preparation and antibacterial activity of PET/chitosan nanofibrous mats using an electrospinning technique. J Appl Polym Sci 105:2816–2823CrossRefGoogle Scholar
  16. Kemp MM, Kumar A, Mousa S, Park TJ, Ajayan P, Kubotera N, Mousa SA, Linhardt RJ (2009) Synthesis of gold and silver nanoparticles stabilized with glycosaminoglycans having distinctive biological activities. Biomacromolecules 10:589–595CrossRefGoogle Scholar
  17. Kong M, Chen XG, Xing K, Park H (2010) Antimicrobial properties of chitosan and mode of action: a state of the art review. J Food Microbiol 144:51–63CrossRefGoogle Scholar
  18. Kvítek L, Panáček A, Soukupová J, Kolář M, Večeřová R, Prucek R, Holecová M, Zbořil R (2008) Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J Phys Chem C 112:5825–5834CrossRefGoogle Scholar
  19. Maganti N, Venkat Surya PKC, Thein-Han WW, Pesacreta TC, Misra RDK (2011) Structure-process-property relationship of biomimetic chitosan-based nanocomposite scaffolds for tissue engineering: biological, physico-chemical, and mechanical functions. Adv Eng Mater 13:B108–B122CrossRefGoogle Scholar
  20. Manna S, Batabyal SK, Nandi AK (2006) Preparation and characterization of silver-poly(vinylidene fluoride) nanocomposites: formation of piezoelectric polymorph of poly(vinylidene fluoride). J Phys Chem B 110:12318–12326CrossRefGoogle Scholar
  21. Manzine Costa LM, Molina de Olyveira G, Cherian BM, Lopes Leão A, Ferreira de Souza S, Ferreira M (2013) Bionanocomposites from electrospun PVA/pineapple nanofibers/stryphnodendron adstringens bark extract for medical applications. Ind Crop Prod 41:198–201CrossRefGoogle Scholar
  22. Martinova L, Lubasova D (2008) Electrospun chitosan based nanofibers. Res J Text Appar 12:72–79CrossRefGoogle Scholar
  23. Meng D, Erol M, Boccaccini AR (2010) Processing technologies for 3D nanostructured tissue engineering scaffolds. Adv Eng Mater 12:B467–B487CrossRefGoogle Scholar
  24. Merrell JG, Mclaughlin SW, Tie L, Laurencin CT, Chen AF, Nair LS (2009) Curcumin-loaded poly(epsilon-caprolactone) nanofibers: diabetic wound dressing with anti-oxidant and anti-inflammatory properties. Clin Exp Pharmacol Physiol 36:1149–1156CrossRefGoogle Scholar
  25. Misra RDK, Girase B, Depan D, Shah JS (2012) Hybrid nanoscale architecture for enhancement of antimicrobial activity: immobilization of silver nanoparticles of thiol-functionalized polymer crystallized on carbon nanotubes. Adv Eng Mater 14:B93–B100CrossRefGoogle Scholar
  26. Mohan YM, Raju KM, Sambasivudu K, Satyendra S, Sreedhar B (2007) Preparation of acacia-stabilized silver nanoparticles: a green approach. J Appl Polym Sci 106:3375–3381CrossRefGoogle Scholar
  27. Molina-Torres J, Salgado-Garciglia R, Ramírez-Chávez E, Del-Rio RE (1996) Purely olefinic alkamides in Heliopsis longipes and Acmella (Spilanthes) oppositifolia. Biochem Syst Ecol 24:43–47CrossRefGoogle Scholar
  28. Molina-Torres J, García-Chávez A, Ramírez-Chávez E (1999) Antimicrobial properties of alkamides present in flavouring plants traditionally used in Mesoamerica: affinin and capsaicin. J Ethnopharmacol 63:241–248CrossRefGoogle Scholar
  29. Molina-Torres J, Salazar-Cabrera J, Armenta-Salinas C, Ramírez-Chávez E (2004) Fungistatic and bacteriostatic activities of alkamides from Heliopsis longipes roots: affinin and reduced alkamides. J Agric Food Chem 52:4700–4704CrossRefGoogle Scholar
  30. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Tapia RJ, Yacaman JM (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRefGoogle Scholar
  31. Musarat A, Hanan MAY, Touseef A, Shamshi H, Azza MES, Hak Young K, Myung-Seob K (2012) Poly(urethane)/G. mollis composite nanofibers for biomedical applications. J Nanoeng Nanomanuf 2:85–90CrossRefGoogle Scholar
  32. Mwilu SK, Siska E, Nasir Baig RB, Rajender SV, Hithmar E, Rogers KR (2014) Separation and measurement of silver nanoparticles and silver ions using magnetic particles. Sci Total Environ 472:316–323CrossRefGoogle Scholar
  33. Nasir Baig RB, Rajender SV (2014) Copper on chitosan: recyclable heterogeneous catalyst for azide-alkyne cycloaddition reactions in water. Green Chem 16:2122–2127CrossRefGoogle Scholar
  34. Nasir Baig RB, Mallikarjuna N, Nadagouda MN, Rajender SV (2013) Ruthenium on chitosan: a recyclable heterogeneous catalysts for aqueous hydration of nitriles to amides. Green Chem 15:1839–1843CrossRefGoogle Scholar
  35. Opanasopit P, Ruktanonchai U, Suwantong O, Panomsuk S, Ngawhirunpat T, Sittisombut C, Suksamran T, Supaphol P (2008) Herbal drug incorporated antibacterial nanofibrous mat fabricated by electrospinning: an excellent matrix for wound dressings. J Cosmet Sci 59:233–242Google Scholar
  36. Parameshwaran R, Kalaiselvam S, Jayavel R (2013) Green synthesis of silver nanoparticles using Beta vulgaris: role of process conditions on size distribution and surface structure. Mater Chem Phys 140:135–147CrossRefGoogle Scholar
  37. Peng Y, Wu Y, Li Y (2013) Development of tea extracts and chitosan composite films for active packing for active packing materials. Int J Biol Macromol 59:282–289CrossRefGoogle Scholar
  38. Rahmanifar B, Dehaghi MS (2013) Removal of organochlorine pesticides by chitosan loaded with silver oxide nanoparticles from water. Clean Technol Environ Policy 16:1781–1786CrossRefGoogle Scholar
  39. Rastegar L, Montazer M, Gaminian H (2016) Clean low-temperature in situ synthesis of durable silver nanoparticles along with aminolysis of polyester fabric using dopamine hydrochloride. Clean Technol Environ Policy. doi: 10.1007/s10098-016-1127-x Google Scholar
  40. Rastogi L, Arunachalam J (2011) Sunlight based irradiation strategy for rapid green synthesis of highly stable silver nanoparticles using aqueous garlic (Allium sativum) extract and their antibacterial potential. J Mater Chem Phys 129:558–563CrossRefGoogle Scholar
  41. Regiel A, Irusta S, Kyziol A, Arruebo M, Santamaria J (2013) Preparation and characterization of chitosan–silver nanocomposite films and their antibacterial activity against Staphylococcus aureus. Nanotechnology 24:015101. doi: 10.1088/0957-4484/24/1/015101 CrossRefGoogle Scholar
  42. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632CrossRefGoogle Scholar
  43. Rios MY, Aguilar-Guadarrama AB, Gutiérrez MC (2007) Analgesic activity of affinin, an alkamide from Heliopsis longipes (Compositae). J Ethnopharmacol 110:364–367CrossRefGoogle Scholar
  44. Roozbahani F, Sultana N, Almasi D, Naghizadeh F (2015) Effects of chitosan concentration on the protein release behaviour of electrospun poly(ε-caprolactone)/chitosan nanofibers. J Nanomater. doi: 10.1155/2015/747420 Google Scholar
  45. Sangsanoh P, Suwantong O, Neamnark A, Cheepsunthornc P, Pavasantd P, Supaphola P (2010) In vitro biocompatibility of electrospun and solvent-cast chitosan substrata towards Schwann, osteoblast, keratinocyte and fibroblast cells. Eur Polym J 46:428–440CrossRefGoogle Scholar
  46. Schiffman JD, Schauer CL (2008) A review: electrospinning of biopolymer nanofibers and their applications. Polym Rev 48:317–352CrossRefGoogle Scholar
  47. Shan-hui H, Yu-Bin C, Ching-Lin T, Keng-Yen F, Shu-Hua W, Hsiang-Jung T (2011) Characterization and biocompatibility of chitosan nanocomposites. Colloids Surf B Biointerface 85:198–206CrossRefGoogle Scholar
  48. Shen ZX, Sherman WF (1991) Structural transformation studies of AgNO3 by Raman and infrared spectroscopy. J Mol Struct 271:175–181CrossRefGoogle Scholar
  49. Sikareepaisan P, Suksamrarn A, Supapol P (2008) Electrospun gelatin fiber mats containing a herbal—Centella asiatica—extract and release characteristic of asiaticoside. Nanotechnology 19:015102. doi: 10.1088/0957-4484/19/01/015102 CrossRefGoogle Scholar
  50. Son B, Yeom BY, Song SH, Lee CS, Hwang TS (2009) Antibacterial electrospun chitosan/poly(vinyl alcohol) nanofibers containing silver nitrate and titanium dioxide. J Appl Polym Sci 111:2892–2899CrossRefGoogle Scholar
  51. Soukupová J, Kvítek L, Panáček A, Nevěčná T, Zbořil R (2008) Comprehensive study on surfactant role on silver nanoparticles (NPs) prepared via modified Tollens process. Mater Chem Phys 111:77–81CrossRefGoogle Scholar
  52. Spasova M, Paneva D, Manolova N, Radenkov P, Rashkov I (2008) Electrospun chitosan-coated fibers of poly(l-lactide) and poly(l-lactide)/poly(ethylene glycol): preparation and characterization. Macromol Biosci 8:153–162CrossRefGoogle Scholar
  53. Sridhar R, Lakshminarayanan R, Madhaiyan K, Amutha Barathi V, Ramakrishna S (2015) Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev 44:790–814CrossRefGoogle Scholar
  54. Sun K, Li ZH (2011) Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. Express Polym Lett 5:342–361CrossRefGoogle Scholar
  55. Sunganya S, Senthil RT, Lakshmi BS, Giridev VR (2011) Herbal drug incorporated antibacterial nanofibrous mat fabricated by electrospinning: an excellent matrix for wound dressings. J Appl Polym Sci 121:2893–2899CrossRefGoogle Scholar
  56. Tayel AA, Moussa SH, Salem MF, Mazrou KE, El-Tras WF (2015) Preparation and characterization of wound healing composites of chitosan, Aloe vera and Calendula officinalis—a comparative study. J Sci Food Agric. doi: 10.1002/jsfa.7227 Google Scholar
  57. Thomas V, Yallapu MM, Sreedhar B, Bajpai SK (2009) Fabrication, characterization of chitosan/nanosilver film and its potential antibacterial application. J Biomater Sci 20:2129–2144CrossRefGoogle Scholar
  58. Wei D, Qian W (2008) Facile synthesis of Ag and Au nanoparticles utilizing chitosan as mediator agent. Colloids Surf B Biointerface 62:136–142CrossRefGoogle Scholar
  59. Xu Z, Peng Y, Wantai Y, Jinchun C (2008) The bio-inspired approach to controllable biomimetic synthesis of silver nanoparticles in organic matrix of chitosan and silver-binding peptide (NPSSLFRYLPSD). Mater Sci Eng C 28:237–242CrossRefGoogle Scholar
  60. Yang L, Zhang L, Webster TJ (2011) Nanobiomaterials: state of the art and future trends. Adv Eng Mater 13:B197–B217CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Fernando Bedolla-Cázares
    • 1
  • Perla E. Hernández-Marcelo
    • 1
  • Mario A. Gómez-Hurtado
    • 1
  • Gabriela Rodríguez-García
    • 1
  • Rosa E. del Río
    • 1
  • Yliana López-Castro
    • 1
  • Juan Pablo García-Merinos
    • 1
  • J. Martín Torres-Valencia
    • 2
  • J. Betzabe González-Campos
    • 1
  1. 1.Institute of Chemical and Biological ResearchesUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico
  2. 2.Universidad Autónoma del Estado de HidalgoMineral de la ReformaMexico

Personalised recommendations