Clean Technologies and Environmental Policy

, Volume 19, Issue 3, pp 749–760 | Cite as

Sustainability assessment of Ricinus communis biodiesel using LCA Approach

  • Mohammed Amouri
  • Faroudja Mohellebi
  • Toudert Ahmed Zaïd
  • Majda Aziza


Biofuels are considered as eco-friendly fuels and can readily replace fossil fuels while helping to reduce greenhouse gas emissions and promoting sustainable rural development. Although Algeria is an oil producer and exporter, the development of renewable energies is a strategic goal for public authorities, which are giving new impetus to this sector to replace the fossil energy resources of which are becoming increasingly scarce. In this context, the life-cycle assessment (LCA) of a second-generation biodiesel derived from Ricinus communis feedstock is undertaken. LCA is a tool that can be used effectively in evaluating various renewable energy sources for their sustainability and can help policy makers to choose the optimal energy source for specific purpose. The life cycle of Castor bean-based biodiesel production includes the stages of cultivation, oil extraction, and biodiesel production. The impact categories studied were global warming, Energy return-on-energy investment (EROEI), human health, and ecosystem. We have used the impact 2002 + evaluation method which is implemented in the SimaPro© software package. Moreover, it is the most useful method for identifying and measuring the impact of industrial products on the environment. Results show that among all the production stages, the cultivation process of Ricinus communis and the conversion of oil to biodiesel are the largest contributors to most of environmental impact categories. Life-cycle analysis revealed that the use of castor for biodiesel production could have many advantages like an energy return-on-energy investment (EROEI) of 2.60 and a positive contribution to climate-change reduction as revealed by a positive carbon balance.


Ricinus communis biodiesel Life-cycle analysis Impact 2002+ EROEI Carbon Balance 


  1. Anitha M, Kamarudin SK, Kofli NT (2016) The potential of glycerol as a value-added commodity. Chem Eng J 295:119–130. doi: 10.1016/j.cej.2016.03.012 CrossRefGoogle Scholar
  2. Aransiola EF, Ojumu TV, Oyekola OO et al (2014) A review of current technology for biodiesel production: state of the art. Biomass Bioenergy 61:276–297. doi: 10.1016/j.biombioe.2013.11.014 CrossRefGoogle Scholar
  3. Atabani AE, Silitonga AS, Badruddin IA et al (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sustain Energy Rev 16:2070–2093. doi: 10.1016/j.rser.2012.01.003 CrossRefGoogle Scholar
  4. Azapagic A (1999) Life cycle assessment and its application to process selection, design and optimisation. Chem Eng J 73:1–21. doi: 10.1016/S1385-8947(99)00042-X CrossRefGoogle Scholar
  5. Bart JCJ, Palmeri N, Cavallaro S (2010) 14-Sustainability and use of biodiesel. In: Bart JCJ, Palmeri N, Cavallaro S (eds) Biodiesel Science and Technology. Woodhead Publishing, Cambridge, pp 625–712CrossRefGoogle Scholar
  6. Berman P, Nizri S, Wiesman Z (2011) Castor oil biodiesel and its blends as alternative fuel. Biomass Bioenergy 35:2861–2866. doi: 10.1016/j.biombioe.2011.03.024 CrossRefGoogle Scholar
  7. Bhuiya MMK, Rasul MG, Khan MMK et al (2016) Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies. Renew Sustain Energy Rev 55:1109–1128. doi: 10.1016/j.rser.2015.04.163 CrossRefGoogle Scholar
  8. Boon-anuwat N, Kiatkittipong W, Aiouache F, Assabumrungrat S (2015) Process design of continuous biodiesel production by reactive distillation: comparison between homogeneous and heterogeneous catalysts. Chem Eng Process Process Intensif 92:33–44. doi: 10.1016/j.cep.2015.03.025 CrossRefGoogle Scholar
  9. Brennan L, Owende P (2010) Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577. doi: 10.1016/j.rser.2009.10.009 CrossRefGoogle Scholar
  10. Brigham RD (1993) Castor: Return of an Old Crop. In: Janick J, Simon JE (eds) New crops. Wiley, New York, pp 380–383Google Scholar
  11. Collet P, Lardon L, Hélias A et al (2014) Biodiesel from microalgae—Life cycle assessment and recommendations for potential improvements. Renew Energy 71:525–533. doi: 10.1016/j.renene.2014.06.009 CrossRefGoogle Scholar
  12. Dias JM, Araújo JM, Costa JF et al (2013) Biodiesel production from raw castor oil. Energy 53:58–66. doi: 10.1016/ CrossRefGoogle Scholar
  13. Drapcho CM, Phu Nhuan N, Walker TH (2008) Biofuels Engineering Process Technology. McGraw-Hill Companies Inc, USAGoogle Scholar
  14. Dufour J, Arsuaga J, Moreno J et al (2013) Comparative life cycle assessment of biodiesel production from cardoon (Cynara cardunculus) and rapeseed oil obtained under spanish conditions. Energy Fuels 27:5280–5286. doi: 10.1021/ef400951f Google Scholar
  15. Edwards R, Larivé J-F, Rickeard D, Weindorf W (2014) Well-to-wheels analysis of future automotive fuels and powertrains in the european context, Version 4.a. Joint Research Centre of the European Commission, Institute for Energy and Transport, Luxembourg, Publications Office of the European Union. doi: 10.2790/95629
  16. Firrisa MT, van Duren I, Voinov A (2013) Energy efficiency for rapeseed biodiesel production in different farming systems. Energy Effic 7:79–95. doi: 10.1007/s12053-013-9201-2 CrossRefGoogle Scholar
  17. Fu Q, Song C, Kansha Y et al (2015) Energy saving in a biodiesel production process based on self-heat recuperation technology. Chem Eng J 278:556–562. doi: 10.1016/j.cej.2014.11.027 CrossRefGoogle Scholar
  18. Gerpen JV (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107. doi: 10.1016/j.fuproc.2004.11.005 CrossRefGoogle Scholar
  19. Gnansounou E, Kenthorai Raman J (2016) Life cycle assessment of algae biodiesel and its co-products. Appl Energy 161:300–308. doi: 10.1016/j.apenergy.2015.10.043 CrossRefGoogle Scholar
  20. Halek F, Delavari A, Kavousi-rahim A (2012) Production of biodiesel as a renewable energy source from castor oil. Clean Technol Environ Policy 15:1063–1068. doi: 10.1007/s10098-012-0570-6 CrossRefGoogle Scholar
  21. Ho WWS, Ng HK, Gan S (2016) Advances in ultrasound-assisted transesterification for biodiesel production. Appl Therm Eng 100:553–563. doi: 10.1016/j.applthermaleng.2016.02.058 CrossRefGoogle Scholar
  22. Hoekman SK, Broch A, Robbins C et al (2012) Review of biodiesel composition, properties, and specifications. Renew Sustain Energy Rev 16:143–169. doi: 10.1016/j.rser.2011.07.143 CrossRefGoogle Scholar
  23. Jeong G-T, Park D-H (2008) Optimization of Biodiesel Production from Castor Oil Using Response Surface Methodology. Appl Biochem Biotechnol 156:1–11. doi: 10.1007/s12010-008-8468-9 CrossRefGoogle Scholar
  24. Jolliet O, Margni M, Charles R et al (2003) IMPACT 2002 + : a new life cycle impact assessment methodology. Int J Life Cycle Assess 8:324–330. doi: 10.1007/BF02978505 CrossRefGoogle Scholar
  25. Kalaivani K, Ravikumar G, Balasubramanian N (2014) Environmental impact studies of biodiesel production from Jatropha curcas in india by life cycle assessment. Environ Prog Sustain Energy 33:1340–1349. doi: 10.1002/ep.11913 Google Scholar
  26. Khond VW, Kriplani VM (2016) Effect of nanofluid additives on performances and emissions of emulsified diesel and biodiesel fueled stationary CI engine: a comprehensive review. Renew Sustain Energy Rev 59:1338–1348. doi: 10.1016/j.rser.2016.01.051 CrossRefGoogle Scholar
  27. Kılıç M, Uzun BB, Pütün E, Pütün AE (2013) Optimization of biodiesel production from castor oil using factorial design. Fuel Process Technol 111:105–110. doi: 10.1016/j.fuproc.2012.05.032 CrossRefGoogle Scholar
  28. Kitani O (1999) CIGR Handbook of Agricultural Engineering, Energy and Biomass Engineering, vol. 5. The American Society of Agricultural Engineers, St JosephGoogle Scholar
  29. Koutroubas SD, Papakosta DK, Doitsinis A (1999) Adaptation and yielding ability of castor plant (Ricinus communis L.) genotypes in a Mediterranean climate. Eur J Agron 11:227–237. doi: 10.1016/S1161-0301(99)00034-9 CrossRefGoogle Scholar
  30. Kumar A, Sharma S (2011) Potential non-edible oil resources as biodiesel feedstock: an Indian perspective. Renew Sustain Energy Rev 15:1791–1800. doi: 10.1016/j.rser.2010.11.020 CrossRefGoogle Scholar
  31. Labalette F, Estragnat A, Messéan A (1996) Development of castor bean production in France. In: Janick J (ed) Progress in new crops. ASHS Press, Alexandria, pp 340–342Google Scholar
  32. Lal R, Stewart BA (2009) Soil quality and biofuel production. CRC Press, Boca RatonGoogle Scholar
  33. Lee KT, Ofori-Boateng C (2013) Sustainability of biofuel production from oil palm biomass. Springer, SingaporeCrossRefGoogle Scholar
  34. Lee AF, Wilson K (2015) Recent developments in heterogeneous catalysis for the sustainable production of biodiesel. Catal Today . doi: 10.1016/j.cattod.2014.03.072 Google Scholar
  35. Marinković DM, Stanković MV, Veličković AV et al (2016) Calcium oxide as a promising heterogeneous catalyst for biodiesel production: current state and perspectives. Renew Sustain Energy Rev 56:1387–1408. doi: 10.1016/j.rser.2015.12.007 CrossRefGoogle Scholar
  36. Maroušek J (2014) Novel technique to enhance the disintegration effect of the pressure waves on oilseeds. Ind Crops Prod 53:1–5. doi: 10.1016/j.indcrop.2013.11.048 CrossRefGoogle Scholar
  37. Mata TM, Caetano NS, Costa CAV et al (2013) Sustainability analysis of biofuels through the supply chain using indicators. Sustain Energy Technol Assess 3:53–60. doi: 10.1016/j.seta.2013.06.001 CrossRefGoogle Scholar
  38. McManus MC, Taylor CM, Mohr A et al (2015) Challenge clusters facing LCA in environmental decision-making—what we can learn from biofuels. Int J Life Cycle Assess 20:1399–1414. doi: 10.1007/s11367-015-0930-7 CrossRefGoogle Scholar
  39. Meneghetti SMP, Meneghetti MR, Wolf CR et al (2006) Biodiesel from castor oil: a comparison of ethanolysis versus methanolysis. Energy Fuels 20:2262–2265. doi: 10.1021/ef060118m CrossRefGoogle Scholar
  40. Menten F, Chèze B, Patouillard L, Bouvart F (2013) A review of LCA greenhouse gas emissions results for advanced biofuels: the use of meta-regression analysis. Renew Sustain Energy Rev 26:108–134. doi: 10.1016/j.rser.2013.04.021 CrossRefGoogle Scholar
  41. Nalgundwar A, Paul B, Sharma SK (2016) Comparison of performance and emissions characteristics of DI CI engine fueled with dual biodiesel blends of palm and jatropha. Fuel 173:172–179. doi: 10.1016/j.fuel.2016.01.022 CrossRefGoogle Scholar
  42. Özcanli M, Serin H, Saribiyik OY et al (2012) Performance and emission studies of castor bean (Ricinus Communis) oil biodiesel and its blends with diesel fuel. Energy Sources Part Recovery Util Environ Eff 34:1808–1814. doi: 10.1080/15567036.2010.545800 CrossRefGoogle Scholar
  43. Panwar NL, Shrirame HY, Bamniya BR (2009) CO2 mitigation potential from biodiesel of castor seed oil in Indian context. Clean Technol Environ Policy 12:579–582. doi: 10.1007/s10098-009-0269-5 CrossRefGoogle Scholar
  44. Peña R, Romero R, Martínez SL et al (2009) Transesterification of castor oil: effect of catalyst and co-solvent. Ind Eng Chem Res 48:1186–1189. doi: 10.1021/ie8005929 CrossRefGoogle Scholar
  45. Rajaeifar MA, Ghobadian B, Safa M, Heidari MD (2014) Energy life-cycle assessment and CO2 emissions analysis of soybean-based biodiesel: a case study. J Clean Prod 66:233–241. doi: 10.1016/j.jclepro.2013.10.041 CrossRefGoogle Scholar
  46. RED (2009) Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/ECGoogle Scholar
  47. Sáez-Bastante J, Pinzi S, Jiménez-Romero FJ et al (2015) Synthesis of biodiesel from castor oil: silent versus sonicated methylation and energy studies. Energy Convers Manag 96:561–567. doi: 10.1016/j.enconman.2015.03.019 CrossRefGoogle Scholar
  48. Sánchez N, Sánchez R, Encinar JM et al (2015) Complete analysis of castor oil methanolysis to obtain biodiesel. Fuel 147:95–99. doi: 10.1016/j.fuel.2015.01.062 CrossRefGoogle Scholar
  49. Sarin A (2012) Biodiesel: production and properties. The Royal Society of Chemistry, LondonGoogle Scholar
  50. Scholz V, da Silva JN (2008) Prospects and risks of the use of castor oil as a fuel. Biomass Bioenergy 32:95–100. doi: 10.1016/j.biombioe.2007.08.004 CrossRefGoogle Scholar
  51. Shonnard DR, Klemetsrud B, Sacramento-Rivero J et al (2015) A review of environmental life cycle assessments of liquid transportation biofuels in the pan American region. Environ Manage 56:1356–1376. doi: 10.1007/s00267-015-0543-8 CrossRefGoogle Scholar
  52. Soratana K, Harden CL, Zaimes GG et al (2014) The role of sustainability and life cycle thinking in US. biofuels policies. Energy Policy 75:316–326. doi: 10.1016/j.enpol.2014.10.015 CrossRefGoogle Scholar
  53. van der Voet E, Lifset RJ, Luo L (2010) Life-cycle assessment of biofuels, convergence and divergence. Biofuels 1:435–449. doi: 10.4155/bfs.10.19 CrossRefGoogle Scholar
  54. Verma P, Sharma MP (2016) Review of process parameters for biodiesel production from different feedstocks. Renew Sustain Energy Rev 62:1063–1071. doi: 10.1016/j.rser.2016.04.054 CrossRefGoogle Scholar
  55. Yang L, Takase M, Zhang M et al (2014) Potential non-edible oil feedstock for biodiesel production in Africa: a survey. Renew Sustain Energy Rev 38:461–477. doi: 10.1016/j.rser.2014.06.002 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mohammed Amouri
    • 1
    • 2
  • Faroudja Mohellebi
    • 1
  • Toudert Ahmed Zaïd
    • 1
  • Majda Aziza
    • 2
  1. 1.Laboratoire de Valorisation des Energies Fossiles, Dépt de Génie ChimiqueEcole Nationale PolytechniqueAlgiersAlgeria
  2. 2.Centre de Développement des Energies Renouvelables CDER AlgiersAlgeria

Personalised recommendations