Skip to main content

Advertisement

Log in

Pre-treatment of remanufacturing cleaning by use of supercritical CO2 in comparison with thermal cleaning

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

With the development of manufacturing industry, environmental issues have grown increasingly important; remanufacturing has thus been proposed as a means of improving manufacturing sustainability. Cleaning of the used product is one of the most demanding steps of remanufacturing and is usually taken to be the main polluting stage. Traditionally, the cleaning of engines has included thermal cleaning as the pre-treatment, followed by physical cleaning such as abrasive blast cleaning or ultrasonic cleaning. In this paper, a novel and environmentally friendly method of remanufacturing cleaning is proposed, using supercritical carbon dioxide (SCCO2) to remove oily contamination on discarded engine components. A comparison is conducted between this method and thermal cleaning, as pre-treatments, followed by abrasive water jet cleaning and ultrasonic cleaning to remove the pre-treatment residues. The results demonstrate that supercritical fluid cleaning is an ideal alternative to thermal cleaning when remanufacturing aluminium parts with low melting points.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abdulrahman MDA, Subramanian N, Liu C, Shu C (2014) Viability of remanufacturing practice: a strategic decision making framework for Chinese auto-parts companies. J Clean Prod. doi:10.1016/j.jclepro.2014.02.065

    Google Scholar 

  • Awad SB, Nagarajan R (2010) Chapter 6—Ultrasonic Cleaning. In: Kohli R, Mittal KL (eds) Developments in surface contamination and cleaning. William Andrew Publishing, Oxford, pp 225–280. doi:10.1016/B978-1-4377-7830-4.10006-4

    Chapter  Google Scholar 

  • Banchero M, Ferri A (2005) Simulation of aqueous and supercritical fluid dyeing of a spool of yarn. J Supercrit Fluids 35:157–166. doi:10.1016/j.supflu.2004.12.009

    Article  CAS  Google Scholar 

  • Bartha L, Koltay E, Mórik G (1996) Abrasive blast cleaning method for the renewal of worn-out acceleration tubes. Nucl Instrum Methods Phys Res Sect B 111:157–160. doi:10.1016/0168-583X(95)01257-5

    Article  CAS  Google Scholar 

  • Beckman EJ (2004) Supercritical and near-critical CO2 in green chemical synthesis and processing. J Supercrit Fluids 28:121–191. doi:10.1016/S0896-8446(03)00029-9

    Article  CAS  Google Scholar 

  • Bernard S (2011) Remanufacturing. J Environ Econ Manag 62:337–351. doi:10.1016/j.jeem.2011.05.005

    Article  Google Scholar 

  • Chang LP et al (2012) Supercritical carbon dioxide anti-solvent purification of anti-oxidative compounds from Lycium barbarum fruits by using response surface methodology. Sep Purif Technol 100:66–73. doi:10.1016/j.seppur.2012.09.001

    Article  CAS  Google Scholar 

  • Chang Y, Bae JH, Yi HC (2013) Ultrasonic cleaning of used plastic parts for remanufacturing of multifunctional digital copier. Int J Precis Eng Manuf 14:951–956

    Article  Google Scholar 

  • China SAotPsRo (2008) General principles for calculation of the comprehensive energy consumption vol GB/T 2589–2008

  • Davis RE (1987) Prevention of fouling in internal combustion engines and their exhaust systems and improved gasoline compositions. Google Patents

  • de Melo MMR, Barbosa HMA, Passos CP, Silva CM (2014) Supercritical fluid extraction of spent coffee grounds: measurement of extraction curves, oil characterization and economic analysis. J Supercrit Fluids 86:150–159. doi:10.1016/j.supflu.2013.12.016

    Article  Google Scholar 

  • Della Porta G, Volpe MC, Reverchon E (2006) Supercritical cleaning of rollers for printing and packaging industry. The Journal of Supercritical Fluids 37:409–416. doi:10.1016/j.supflu.2006.01.018

    Article  CAS  Google Scholar 

  • García-Cascales, Lamata MT (2009) Selection of a cleaning system for engine maintenance based on the analytic hierarchy process. Comput Ind Eng 56:1442–1451. doi:10.1016/j.cie.2008.09.015

    Article  Google Scholar 

  • Haas PM (1992) Banning chlorofluorocarbons: epistemic community efforts to protect stratospheric ozone. Int Org 46:187–224

    Article  Google Scholar 

  • Haldorai Y, Shim JJ, Lim KT (2012) Synthesis of polymer–inorganic filler nanocomposites in supercritical CO2. J Supercrit Fluids 71:45–63. doi:10.1016/j.supflu.2012.07.007

    Article  CAS  Google Scholar 

  • Hedrick JL, Mulcahey LJ, Taylor LT (1992) Supercritical fluid extraction. Microchim Acta 108:115–132

    Article  CAS  Google Scholar 

  • Hong SA, Kim SJ, Chung KY, Chun M-S, Lee BG, Kim J (2013) Continuous synthesis of lithium iron phosphate (LiFePO4) nanoparticles in supercritical water: effect of mixing tee. J Supercrit Fluids 73:70–79. doi:10.1016/j.supflu.2012.11.008

    Article  CAS  Google Scholar 

  • Hori T, Kongdee A (2014) Dyeing of PET/co-PP composite fibers using supercritical carbon dioxide. Dyes Pigment 105:163–166. doi:10.1016/j.dyepig.2014.01.023

    Article  CAS  Google Scholar 

  • Hou A, Chen B, Dai J, Zhang K (2010) Using supercritical carbon dioxide as solvent to replace water in polyethylene terephthalate (PET) fabric dyeing procedures. J Clean Prod 18:1009–1014. doi:10.1016/j.jclepro.2010.03.001

    Article  CAS  Google Scholar 

  • Huang TL, Lin JCT, Chyau CC, Chyau CC, Lin KL, Chang CMJ (2013) Purification of lignans from Schisandra chinensis fruit by using column fractionation and supercritical antisolvent precipitation. J Chromatogr A 1282:27–37. doi:10.1016/j.chroma.2013.01.091

    Article  CAS  Google Scholar 

  • Ijomah WL (2009) Addressing decision making for remanufacturing operations and design-for-remanufacture. Int J Sustain Eng 2:91–102

    Article  Google Scholar 

  • Ijomah WL, McMahon CA, McMahon CA, Hammond GP, Newman ST (2007) Development of design for remanufacturing guidelines to support sustainable manufacturing. Robot Comput-Integr Manuf 23:712–719. doi:10.1016/j.rcim.2007.02.017

    Article  Google Scholar 

  • Kamarei F, Vajda P, Guiochon G (2013) Comparison of large scale purification processes of naproxen enantiomers by chromatography using methanol–water and methanol–supercritical carbon dioxide mobile phases. J Chromatogr A. doi:10.1016/j.chroma.2013.07.112

    Google Scholar 

  • Khanpour R, Sheikhi-Kouhsar MR, Esmaeilzadeh F, Mowla D (2014) Removal of contaminants from polluted drilling mud using supercritical carbon dioxide extraction. J Supercrit Fluids 88:1–7. doi:10.1016/j.supflu.2014.01.004

    Article  CAS  Google Scholar 

  • Kikuchi E, Kikuchi Y, Hirao M (2011) Analysis of risk trade-off relationships between organic solvents and aqueous agents: case study of metal cleaning processes. J Clean Prod 19:414–423. doi:10.1016/j.jclepro.2010.05.021

    Article  CAS  Google Scholar 

  • Konar N, Dalabasmaz S, Poyrazoglu ES, Artik N, Colak A (2014) The determination of the caffeic acid derivatives of Echinacea purpurea aerial parts under various extraction conditions by supercritical fluid extraction (SFE). J Supercrit Fluids 89:128–136. doi:10.1016/j.supflu.2014.02.014

    Article  CAS  Google Scholar 

  • Korus RA, Jo J, Peterson CL (1985) A rapid engine test to measure injector fouling in diesel engines using vegetable oil fuels. J Am Oil Chem Soc 62:1563–1564

    Article  CAS  Google Scholar 

  • Lindahl M, Svensson N, Svensson BH, Sundin E (2013) Industrial cleaning with Qlean water—a case study of printed circuit boards. J Clean Prod 47:19–25. doi:10.1016/j.jclepro.2013.01.032

    Article  Google Scholar 

  • Liu W, Zhang B, Li MZ, Li Y, Zhang HC (2013) Study on remanufacturing cleaning technology in mechanical equipment remanufacturing process. In: Re-engineering manufacturing for sustainability. Springer, Singapore, pp 643–648

  • Liu WW, Zhang B, Li YZ, He YM, Zhang HC (2014) An environmentally friendly approach for contaminants removal using supercritical CO2 for remanufacturing industry. Appl Surf Sci 292:142–148. doi:10.1016/j.apsusc.2013.11.102

    Article  CAS  Google Scholar 

  • Long JJ, Xu HM, Cui CL, Wei XC, Chen F, Cheng AK (2014) A novel plant for fabric rope dyeing in supercritical carbon dioxide and its cleaner production. J Clean Prod 65:574–582. doi:10.1016/j.jclepro.2013.08.008

    Article  CAS  Google Scholar 

  • Middelkoop V et al (2014) Imaging the continuous hydrothermal flow synthesis of nanoparticulate CeO2 at different supercritical water temperatures using in situ angle-dispersive diffraction. The J Supercrit Fluids 87:118–128. doi:10.1016/j.supflu.2013.12.022

    Article  CAS  Google Scholar 

  • Ming-yu Z, Shi-wei L, Ming C (2011) Study on cleaning technology for automobile parts remanufacturing. Mach Des Manuf 6:117–119

    Google Scholar 

  • Nnorom IC, Osibanjo O (2010) Overview of prospects in adopting remanufacturing of end-of-life electronic products in the developing countries. Int J Innov Manag Technol 1:328–338

    Google Scholar 

  • Quach DL, Mincher BJ, Wai CM (2014) Supercritical fluid extraction and separation of uranium from other actinides. J Hazard Mater 274:360–366. doi:10.1016/j.jhazmat.2014.04.023

    Article  CAS  Google Scholar 

  • Rajaei H, Amin A, Golchehre A, Esmaeilzadeh F (2012) Investigation on the effect of different supercritical fluid extraction process on the activation of the R-134 catalyst. J Supercrit Fluids 67:1–6. doi:10.1016/j.supflu.2012.02.005

    Article  CAS  Google Scholar 

  • Sakai K (2007) Ricoh’s approach to product Life cycle management and technology development. In: Advances in life cycle engineering for sustainable manufacturing businesses. Springer, London, pp 5–9

  • Shi X, Tal G, Hankins NP, Gitis V (2014) Fouling and cleaning of ultrafiltration membranes: a review. J Water Process Eng 1:121–138. doi:10.1016/j.jwpe.2014.04.003

    Article  Google Scholar 

  • Silva LPS, Martínez J (2014) Mathematical modeling of mass transfer in supercritical fluid extraction of oleoresin from red pepper. J Food Eng 133:30–39. doi:10.1016/j.jfoodeng.2014.02.013

    Article  CAS  Google Scholar 

  • Singh S, Olugu EU, Fallahpour A (2014) Fuzzy-based sustainable manufacturing assessment model for SMEs. Clean Technol Environ Policy 16:847–860

    Article  Google Scholar 

  • Sivakumar V, Chandrasekaran F, Swaminathan G, Rao PG (2009) Towards cleaner degreasing method in industries: ultrasound-assisted aqueous degreasing process in leather making. J Clean Prod 17:101–104. doi:10.1016/j.jclepro.2008.02.012

    Article  CAS  Google Scholar 

  • Vasiljev P, Borodinas S, Bareikis R, Struckas A (2013) Ultrasonic system for solar panel cleaning Sensors and Actuators A. Physical 200:74–78. doi:10.1016/j.sna.2013.01.009

    CAS  Google Scholar 

  • Vinodh S, Jayakrishna K, Kumar V, Dutta R (2014) Development of decision support system for sustainability evaluation: a case study. Clean Technol Environ Policy 16:163–174

    Article  Google Scholar 

  • Weibel GL, Ober CK (2003) An overview of supercritical CO2 applications in microelectronics processing. Microelectron Eng 65:145–152. doi:10.1016/S0167-9317(02)00747-5

    Article  Google Scholar 

  • Wilson DI et al (2014) Cleaning of soft-solid soil layers on vertical and horizontal surfaces by stationary coherent impinging liquid jets. Chem Eng Sci 109:183–196. doi:10.1016/j.ces.2014.01.034

    Article  CAS  Google Scholar 

  • Wolkoff P, Schneider T, Kildesø J, Degerth R, Jaroszewski M, Schunk H (1998) Risk in cleaning: chemical and physical exposure. Sci Total Environ 215:135–156. doi:10.1016/S0048-9697(98)00110-7

    Article  CAS  Google Scholar 

  • Yan J, Feng C (2014) Sustainable design-oriented product modularity combined with 6R concept: a case study of rotor laboratory bench. Clean Technol Environ Policy 16:95–109

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received research funds from the National Program on Key Basic Research Project (973 Program) of China with Grant No. 2011CB013402, the fundamental research funds for the central universities of China with Grant No. DUT14RC (4)21, and the financial support from programme of China Scholarships Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiwei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Liu, W., Short, T. et al. Pre-treatment of remanufacturing cleaning by use of supercritical CO2 in comparison with thermal cleaning. Clean Techn Environ Policy 17, 1563–1572 (2015). https://doi.org/10.1007/s10098-014-0888-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-014-0888-3

Keywords

Navigation