Ceftazidime-avibactam, meropenen-vaborbactam, and imipenem-relebactam in combination with aztreonam against multidrug-resistant, metallo-β-lactamase-producing Klebsiella pneumoniae

Abstract

The spread of multidrug-resistant (MDR), metallo-β-lactamase (MBL)-producing Klebsiella pneumoniae represents a major therapeutic challenge. The newly introduced β-lactam-β-lactamase inhibitors (BLBLIs), ceftazidime/avibactam (CAZ/AVI), meropenem/vaborbactam (M/V), and imipenem/relebactam (I/R) are inactive against MBLs. The aim of this study was to evaluate the in vitro efficacy of aztreonam (ATM) in combination with CAZ/AVI, M/V, and I/R against 40 MDR, MBL-producing, and serine-β-lactamases co-producing Klebsiella pneumoniae using the Etest method. Synergy was defined as a fractional inhibitory concentration index ≤0.5. All isolates were resistant to ATM, CAZ/AVI, and I/R and 38/40 (95%) were resistant to M/V. Synergy was observed in 97.5% in the combinations CAZ/AVI-ATM, and I/R-ATM and in 72.5% in the combination M/V-ATM. Further clinical studies are required to confirm the efficacy of these antimicrobial combinations.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, Cornaglia G, Garau J, Gniadkowski M, Hayden MK, Kumarasamy K, Livermore DM, Maya JJ, Nordmann P, Patel JB, Paterson DL, Pitout J, Villegas MV, Wang H, Woodford N, Quinn JP (2013) Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 3(9):785–796

    Article  Google Scholar 

  2. 2.

    Wang W, Jiang T, Zhang W, Li C, Chen J, Xiang D, Cao K, Qi LW, Li P, Zhu W, Chen W, Chen Y (2017) Predictors of mortality in bloodstream infections caused by multidrug-resistant gram-negative bacteria: 4 years of collection. Am J Infect Control 45(1):59–64

    Article  Google Scholar 

  3. 3.

    Thaden JT, Li Y, Ruffin F, Maskarinec SA, Hill-Rorie JM, Wanda LC, Reed SD, Fowler VG Jr (2017) Increased costs associated with bloodstream infections caused by multidrug-resistant Gram-negative bacteria are due primarily to patients with hospital-acquired infections. Antimicrob Agents Chemother 61(3):e01709–16

    CAS  Article  Google Scholar 

  4. 4.

    Hauck C, Cober E, Richter SS, Perez F, Salata RA, Kalayjian RC, Watkins RR, Scalera NM, Doi Y, Kaye KS, Evans S, Fowler VG Jr, Bonomo RA, van Duin D, Antibacterial Resistance Leadership Group (2016) Spectrum of excess mortality due to carbapenem-resistant Klebsiella pneumoniae infections. Clin Microbiol Infect 22(6):513–519

    CAS  Article  Google Scholar 

  5. 5.

    European Centre for Disease Prevention and Control (2019) Surveillance of antimicrobial resistance in Europe-annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-resistance-europe-2019.pdf

  6. 6.

    Davido B, Bouchand F, Dinh A, Perronne C, Villart M, Senard O, Salomon J (2017) Reinforcement of an antimicrobial stewardship task force aims at a better use of antibiotics of last resort: the COLITIFOS study. Int J Antimicrob Agents 50(2):142–147

    CAS  Article  Google Scholar 

  7. 7.

    Dickstein Y, Lellouche J, Schwartz D, Nutman A, Rakovitsky N, Dishon Benattar Y, Altunin S, Bernardo M, Iossa D, Durante-Mangoni E, Antoniadou A, Skiada A, Deliolanis I, Daikos GL, Daitch V, Yahav D, Leibovici L, Rognås V, Friberg LE, Mouton JW, Paul M, Carmeli Y; AIDA study group (2019) Colistin resistance development following colistin-meropenem combination therapy vs. colistin monotherapy in patients with infections caused by carbapenem-resistant organisms. Clin Infect Dis ciz1146

  8. 8.

    Chiu SK, Chan MC, Huang LY, Lin YT, Lin JC, Lu PL, Siu LK, Chang FY, Yeh KM (2017) Tigecycline resistance among carbapenem-resistant Klebsiella pneumoniae: clinical characteristics and expression levels of efflux pump genes. PLoS One 12(4):e0175140

    Article  Google Scholar 

  9. 9.

    Doi Y (2019) Treatment options for carbapenem-resistant gram-negative bacterial infections. Clin Infect Dis 69(Suppl 7):S565–S575

    CAS  Article  Google Scholar 

  10. 10.

    Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18(3):268–281

    CAS  Article  Google Scholar 

  11. 11.

    Poirel L, Walsh TR, Cuvillier V, Nordmann P (2011) Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 70(1):119–123

    CAS  Article  Google Scholar 

  12. 12.

    Samonis G, Maraki S, Karageorgopoulos DE, Vouloumanou EK, Falagas ME (2012) Synergy of fosfomycin with carbapenems, colistin, netilmicin, and tigecycline against multidrug-resistant Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeruginosa clinical isolates. Eur J Clin Microbiol Infect Dis 31(5):695–701

    CAS  Article  Google Scholar 

  13. 13.

    Galani I, Karaiskos I, Karantani I, Papoutsaki V, Maraki S, Papaioannou V, Kazila P, Tsorlini H, Charalampaki N, Toutouza M, Vagiakou H, Pappas K, Kyratsa A, Kontopoulou K, Legga O, Petinaki E, Papadogeorgaki H, Chinou E, Souli M, Giamarellou H, On Behalf Of The Study Collaborators (2018) Epidemiology and resistance phenotypes of carbapenemase-producing Klebsiella pneumoniae in Greece, 2014 to 2016. Euro Surveill 23(31)

  14. 14.

    Romanelli F, De Robertis A, Carone G, Dalfino L, Stufano M, Del Prete R, Mosca A (2020) In vitro activity of ceftazidime/avibactam alone and in combination with fosfomycin and carbapenems against KPC-producing Klebsiella pneumoniae. New Microbiol 43(3):136–138

    CAS  PubMed  Google Scholar 

  15. 15.

    Avery LM, Nicolau DP (2018) Assessing the in vitro activity of ceftazidime/avibactam and aztreonam among carbapenemase-producing Enterobacteriaceae: defining the zone of hope. Int J Antimicrob Agents 52(5):688–691

    CAS  Article  Google Scholar 

  16. 16.

    Avery LM, Mullane EM, Nicolau DP (2020) Evaluation of the in vitro activity of WCK 5222 (cefepime/zidebactam) and currently available combination therapies against single- and double-carbapenemase producing Enterobacteriaceae: expanding the zone of hope. Int J Antimicrob Agents 55(2):105863

    CAS  Article  Google Scholar 

  17. 17.

    Wenzler E, Deraedt MF, Harrington AT, Danizger LH (2017) Synergistic activity of ceftazidime-avibactam against serine and metallo-β-lactamase producing Gram-negative pathogens. Diagn Microbiol Infect Dis 88(4):352–354

    CAS  Article  Google Scholar 

  18. 18.

    Jayol A, Nordmann P, Poirel L, Dubois V (2018) Ceftazidime/avibactam alone or in combination with aztreonam against colistin-resistant and carbapenemase-producing Klebsiella pneumoniae. J Antimicrob Chemother 73(2):542–544

    CAS  Article  Google Scholar 

  19. 19.

    Marshall S, Hujer AM, Rojas LJ, Papp-Wallace KM, Humphries RM, Spellberg B, Hujer KM, Marshall EK, Rudin SD, Perez F, Wilson BM, Wasserman RB, Chikowski L, Paterson DL, Vila AJ, van Duin D, Kreiswirth BN, Chambers HF, Fowler VG Jr, Jacobs MR, Pulse ME, Weiss WJ, Bonomo RA (2017) Can ceftazidime-avibactam overcome β-lactam resistance conferred by metallo-β-lactamases in Enterobacteriaceae? Antimicrob Agents Chemother 61(4):e02243–16

    CAS  Article  Google Scholar 

  20. 20.

    Pragasam AK, Veeraraghavan B, Shankar BA, Bakthavatchalam YD, Mathuram A, George B, Chacko B, Korula P, Anandan S (2019) Will ceftazidime/avibactam plus aztreonam be effective for NDM and OXA-48-like producing organisms. Lessons learnt for in vitro study. Indian J Med Microbiol 37(1):34–41

    Article  Google Scholar 

  21. 21.

    Biagi M, Wu T, Lee M, Patel S, Butler D, Wenzler E (2019) Searching for the optimal treatment for metallo- and serine-β-lactamase-producing Enterobacteriaceae: aztreonam in combination with ceftazidime-avibactam or meropenem-vaborbactam. Antimicrob Agents Chemother 63(12):e01426–19

    CAS  PubMed Central  Google Scholar 

  22. 22.

    Davido B, Fellous L, Lawrence C, Maxime V, Rottman M, Dinh A (2017) Ceftazidime-avibactam and aztreonam, an interesting strategy to overcome β-lactam resistance conferred by metallo-β-lactamases in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 61(9):e01008–17

    CAS  Article  Google Scholar 

  23. 23.

    Yasmin M, Fouts DE, Jacobs MR, Haydar H, Marshall SH, White R, D’Souza R, Lodise TP, Rhoads DD, Hujer AM, Rojas LJ, Hoyen C, Perez F, Edwards A, Bonomo RA (2020) Monitoring ceftazidime-avibactam and aztreonam concentrations in the treatment of a bloodstream infection caused by a multidrug-resistant Enterobacter sp. carrying both Klebsiella pneumoniae carbapenemase-4 and New Delhi metallo-β-lactamase-1. Clin Infect Dis 71(4):1095–1098

    CAS  Article  Google Scholar 

  24. 24.

    Hobson CA, Bonacorsi S, Fahd M, Baruchel A, Cointe A, Poey N, Jacquier H, Doit C, Monjault A, Tenaillon O, Birgy A (2019) Successful treatment of bacteremia due to NDM-1-producing Morganella morganii with aztreonam and ceftazidime-avibactam combination in a pediatric patient with hematologic malignancy. Antimicrob Agents Chemother 63(2):e02463–18

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Shaw E, Rombauts A, Tubau F, Padullés A, Càmara J, Lozano T, Cobo-Sacristán S, Sabe N, Grau I, Rigo-Bonnin R, Dominguez MA, Carratalà J (2018) Clinical outcomes after combination treatment with ceftazidime/avibactam and aztreonam for NDM-1/OXA-48/CTX-M-15-producing Klebsiella pneumoniae infection. J Antimicrob Chemother 73(4):1104–1106

    CAS  Article  Google Scholar 

  26. 26.

    Falcone M, Gaikos GL, Tiseo G, Bassoulis D, Giordano C, Galfo V, Leonildi A, Tagliaferri E, Barnini S, Sani S, Farcomeni A, Ghiadoni L, Menichetti F (2020) Efficacy of ceftazidime-avibactam plus aztreonam in patients with bloodstream infections caused by MBL- producing Enterobacterales. Clin Infect Dis ciaa586.

  27. 27.

    Karlowsky JA, Kazmierczak KM, de Jonge BLM, Hackel MA, Sahm DF, Bradford PA (2017) In vitro activity of aztreonam-avibactam against Enterobacteriaceae and Pseudomonas aeruginosa isolated by clinical laboratories in 40 countries from 2012 to 2015. Antimicrob Agents Chemother 61(9):e00472–17

  28. 28.

    Sader HS, Mendes RE, Pfaller MA, Shortridge D, Flamm RK, Castanheira M (2017) Antimicrobial activities of aztreonam-avibactam and comparator agents against contemporary (2016) clinical Enterobacteriaceae isolates. Antimicrob Agents Chemother 62(1):e01856–17

    Article  Google Scholar 

  29. 29.

    Zhang B, Zhu Z, Jia W, Qu F, Huang B, Shan B, Yu H, Tang Y, Chen L, Du H (2020) In vitro activity of aztreonam-avibactam against metallo-β-lactamase-producing Enterobacteriaceae- a multicenter study in China. Int J Infect Dis 97:11–18

    CAS  Article  Google Scholar 

  30. 30.

    Cornely OA, Cisneros JM, Torre-Cisneros J, Rodríguez-Hernández MJ, Tallón-Aguilar L, Calbo E, Horcajada JP, Queckenberg C, Zettelmeyer U, Arenz D, Rosso-Fernández CM, Jiménez-Jorge S, Turner G, Raber S, O’Brien S, Luckey A, COMBACTE-CARE consortium/REJUVENATE Study Group (2020) Pharmacokinetics and safety of aztreonam/avibactam for the treatment of complicated intra-abdominal infections in hospitalized adults: results from the REJUVENATE study. J Antimicrob Chemother 75(3):618–627

    CAS  Article  Google Scholar 

  31. 31.

    Monogue ML, Abbo LM, Rosa R, Camargo JF, Martinez O, Bonomo RA, Nicolau DP (2017) In vitro discordance with in vivo activity: humanized exposures of ceftazidime-avibactam, aztreonam, and tigecycline alone and in combination against New Delhi metallo-β-lactamase-producing Klebsiella pneumoniae in a murine lung infection model. Antimicrob Agents Chemother 61(7):e00486–17

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sofia Maraki.

Ethics declarations

Ethics approval and consent to participate

Ethical approval was waived by the local Ethics Committee of the University Hospital of Heraklion in view of the retrospective nature of the study and all the procedures being performed were part of the routine care.

Consent to participate

not applicable.

Consent for publication

All authors have read the manuscript and approved submission.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maraki, S., Mavromanolaki, V.E., Moraitis, P. et al. Ceftazidime-avibactam, meropenen-vaborbactam, and imipenem-relebactam in combination with aztreonam against multidrug-resistant, metallo-β-lactamase-producing Klebsiella pneumoniae. Eur J Clin Microbiol Infect Dis (2021). https://doi.org/10.1007/s10096-021-04197-3

Download citation

Keywords

  • Klebsiella pneumoniae
  • Carbapenem resistance
  • MBL
  • Ceftazidime/avibactam
  • Meropenem/vaborbactam
  • Imipenem/relebactam
  • Aztreonam
  • Synergy