Clinical impact of rapid susceptibility testing on Mueller-Hinton Rapid-SIR directly from urine specimens


Urinary tract infection diagnosis and management generally involves a 48-h microbiological delay to obtain the antibiotic susceptibility test (AST) results. In the context of multidrug resistance, reducing the time to obtain AST results is an essential factor, allowing for more timely appropriate treatment. We conducted a single-centre prospective study on urinary samples meeting two criteria: significant leukocyturia > 50/mm3 and exclusive presence of Gram-negative bacilli on direct examination. AST were performed by direct inoculation on Mueller-Hinton Rapid-SIR (MHR-SIR) agar. We evaluated the time to antibiotic adaptation by the antimicrobial stewardship team according to rapid AST results. Patients were subsequently excluded from the study if asymptomatic bacteria were confirmed, or in the absence of clinical data. Seventy patients were included. Mean age of patients was 68.8 years (± 21.3). Empirical antibiotic treatment were mainly based on third generation cephalosporins (n = 33), fluoroquinolones (n = 15), beta-lactamin/beta-lactamase inhibitors (n = 7), fosfomycin and nitrofurantoin (n = 5, each). The average time to obtain results was 7.2 h (± 1.6 h). Adaptation of therapy following MHR-SIR was performed for 29 patients (41%) with early switch to oral antibiotics, de-escalation or escalation in respectively 72.3%, 30%, and 11% of cases. Time saving of MHR-SIR compared with the standard technique was 42.6 (± 16.7) h. This study showed that rapid antibiotic susceptibility test results, using MHR-SIR method directly from urine, can be obtained 40 h earlier than conventional AST. The study also demonstrated significant clinical impact on the selection and reduction of the antibiotic therapy spectrum.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2


  1. 1.

    Zingg W, Metsini A, Balmelli C, Neofytos D, Behnke M, Gardiol C et al (2019) National point prevalence survey on healthcare-associated infections in acute care hospitals, Switzerland, 2017. Euro Surveill Bull Eur Sur Mal Transm Eur Commun Dis Bull 24.

  2. 2.

    Exner M, Bhattacharya S, Christiansen B, Gebel J, Goroncy-Bermes P, Hartemann P et al (2017) Antibiotic resistance: what is so special about multidrug-resistant Gram-negative bacteria? GMS Hyg Infect Control 12:Doc05.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Ayukekbong JA, Ntemgwa M, Atabe AN (2017) The threat of antimicrobial resistance in developing countries: causes and control strategies. Antimicrob Resist Infect Control 6:47.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S et al (2015) The global threat of antimicrobial resistance: science for intervention. New Microbes New Infect 6:22–29.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    van Belkum A, Bachmann TT, Lüdke G, Lisby JG, Kahlmeter G, Mohess A et al (2019) Developmental roadmap for antimicrobial susceptibility testing systems. Nat Rev Microbiol 17:51–62.

    CAS  Article  Google Scholar 

  6. 6.

    van den Bijllaardt W, Buiting AG, Mouton JW, Muller AE (2017) Shortening the incubation time for antimicrobial susceptibility testing by disk diffusion for Enterobacteriaceae: how short can it be and are the results accurate? Int J Antimicrob Agents 49:631–637.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Le Page S, Dubourg G, Rolain J-M (2016) Evaluation of the Scan® 1200 as a rapid tool for reading antibiotic susceptibility testing by the disc diffusion technique. J Antimicrob Chemother 71:3424–3431.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Fröding I, Vondracek M, Giske CG (2017) Rapid EUCAST disc diffusion testing of MDR Escherichia coli and Klebsiella pneumoniae: inhibition zones for extended-spectrum cephalosporins can be reliably read after 6 h of incubation. J Antimicrob Chemother 72:1094–1102.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Hombach M, Jetter M, Blöchliger N, Kolesnik-Goldmann N, Böttger EC (2017) Fully automated disc diffusion for rapid antibiotic susceptibility test results: a proof-of-principle study. J Antimicrob Chemother 72:1659–1668.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Doern CD (2018) The slow march toward rapid phenotypic antimicrobial susceptibility testing: are we there yet? J Clin Microbiol 56.

  11. 11.

    Li Y, Yang X, Zhao W (2017) Emerging microtechnologies and automated systems for rapid bacterial identification and antibiotic susceptibility testing. SLAS Technol 22:585–608.

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Wattal C, Oberoi JK (2016) Microbial identification and automated antibiotic susceptibility testing directly from positive blood cultures using MALDI-TOF MS and VITEK 2. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol 35:75–82.

    CAS  Article  Google Scholar 

  13. 13.

    Périllaud-Dubois C, Pilmis B, Diep J, de Ponfilly GP, Perreau S, Ruffier d’Epenoux L et al (2018) Performance of rapid antimicrobial susceptibility testing by disk diffusion on MHR-SIR agar directly on urine specimens. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol 1.

  14. 14.

    Matuschek E, Brown DFJ, Kahlmeter G (2014) Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 20:O255–O266.

    CAS  Article  Google Scholar 

  15. 15.

    Pilmis B, Thy M, Diep J, Krob S, Périllaud C, Couzigou C et al (2019) Clinical impact of rapid susceptibility testing on MHR-SIR directly from blood cultures. J Antimicrob Chemother 3.

  16. 16.

    Wootton M BSAC methods for antimicrobial susceptibility testing:2013

  17. 17.


  18. 18.

    Weiss E, Zahar J-R, Lesprit P, Ruppe E, Leone M, Chastre J et al (2015) Elaboration of a consensual definition of de-escalation allowing a ranking of β-lactams. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis 21:649.e1–649.10.

    CAS  Article  Google Scholar 

  19. 19.

    Caron F, Galperine T, Flateau C, Azria R, Bonacorsi S, Bruyère F et al (2018) Practice guidelines for the management of adult community-acquired urinary tract infections. Med Mal Infect 48:327–358.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Schoepp NG, Schlappi TS, Curtis MS, Butkovich SS, Miller S, Humphries RM et al (2017) Rapid pathogen-specific phenotypic antibiotic susceptibility testing using digital LAMP quantification in clinical samples. Sci Transl Med 4:9.

    CAS  Article  Google Scholar 

  21. 21.

    Altobelli E, Mohan R, Mach KE, Sin MLY, Anikst V, Buscarini M et al (2017) Integrated biosensor assay for rapid uropathogen identification and phenotypic antimicrobial susceptibility testing. Eur Urol Focus 3:293–299.

    Article  PubMed  Google Scholar 

  22. 22.

    Barry AL, Joyce LJ, Adams AP, Benner EJ (1973) Rapid determination of antimicrobial susceptibility for urgent clinical situations. Am J Clin Pathol 59:693–699.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Källenius G, Dornbusch K, Hallander HO, Jakobsson K (1981) Comparison of direct and standardized antibiotic susceptibility testing in bacteriuria. Chemotherapy 27:99–105.

    Article  PubMed  Google Scholar 

  24. 24.

    Hollick GE, Washington JA (1976) Comparison of direct and standardized disk diffusion susceptibility testing of urine cultures. Antimicrob Agents Chemother 9:804–809

    CAS  Article  Google Scholar 

  25. 25.

    Buehler SS, Madison B, Snyder SR, Derzon JH, Cornish NE, Saubolle MA et al (2016) Effectiveness of practices to increase timeliness of providing targeted therapy for inpatients with bloodstream infections: a laboratory medicine best practices systematic review and meta-analysis. Clin Microbiol Rev 29:59–103.

    Article  PubMed  Google Scholar 

Download references


We would like to thank Charlotte Duncan who revised the manuscript for English usage.

Author information



Corresponding author

Correspondence to Jean-Claude Nguyen Van.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was approved by the local clinical research ethics committee and registered at GHPSJ under GERM-IRB registration number 000375.

Informed consent

Not required.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pilmis, B., Jiang, O., Thy, M. et al. Clinical impact of rapid susceptibility testing on Mueller-Hinton Rapid-SIR directly from urine specimens. Eur J Clin Microbiol Infect Dis 39, 1373–1377 (2020).

Download citation


  • Clinical impact
  • Prospective study
  • Disk agar diffusion
  • Rapid antimicrobial susceptibility testing
  • Rapid AST
  • Urines
  • Antimicrobial stewardship team