Skip to main content
Log in

Multi-step optimization of the filtration method for the isolation of Campylobacter species from stool samples

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The filtration method (FM) is the most effective isolation technique for Epsilobacteriaceae from stool samples. FM’s different adaptations make it difficult to compare data between studies. This study was performed in three phases to optimize FM from a routine laboratory perspective. In July–September 2014 (part I), FM was performed on Mueller–Hinton agar containing 5% sheep blood and Columbia agar containing 5% sheep blood. In July 2016 (part II), FM was performed using 0.60-μm pore size polycarbonate filters (0.6-PC filter) and 0.45-μm pore size cellulose acetate filters (0.45-AC filter); in January 2018 (part III), the addition of hydrogen to incubators was studied. On 1146 stools analyzed in part I, the positive samples that showed no growth on the Butzler medium (n = 22/72, 30.6%) had improved growth of Epsilobacteriaceae when using the Columbia instead of the Mueller–Hinton medium (21/22 strains vs. 11/22, p < 0.05). In part II, on 718 stools, 91 strains grew with FM (12.7%), more with 0.6-PC filter (90/91) than with 0.45-AC filter (44/91) (p < 0.05). In part III, 578 stools were cultured, 98 Epsilobacteriaceae strains grew with FM, and 7% hydrogen finding significantly more Epsilobacteriaceae than without hydrogen (90/98, 91.8%, vs. 72/98, 73.5%; p < 0.05). The use of a Columbia medium containing 5% sheep blood with 0.6-PC filters incubated at 37 °C in a 7% hydrogen-enriched atmosphere led to an almost fourfold increase in the isolation rate of Epsilobacteriaceae among the studied combinations. Reference centers for Campylobacter should use standardized protocols to enable the comparison of prevalence in space and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization, (2012) Food and Agriculture Organization of the United Nations & World Organisation for Animal Health. The global view of campylobacteriosis: report of an expert consultation, Utrecht, Netherlands, 9–11 July 2012. World Health Organization. http://www.who.int/iris/handle/10665/80751. Accessed Nov 2016

  2. EFSA (European Food Safety Authority), ECDC (European Centre for Disease Prevention and Control) (2015) The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2014. EFSA J 13(4329):1–191. https://doi.org/10.2903/j.efsa.2015.4329

    Article  CAS  Google Scholar 

  3. Man SM (2011) The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol Hepatol 8:669–685. https://doi.org/10.1038/nrgastro.2011.191

    Article  CAS  PubMed  Google Scholar 

  4. Sibanda N, McKenna A, Richmond A, Ricke SC, Callaway T, Stratakos AC et al (2018) A review of the effect of management practices on Campylobacter prevalence in poultry farms. Front Microbiol 9:2002. https://doi.org/10.3389/fmicb.2018.02002

    Article  PubMed  PubMed Central  Google Scholar 

  5. Debruyne L, Gevers D, Vandamme P (2008) Chapter 1: taxonomy of the family Campylobacteraceae. In: Campylobacter. ASM Press. p. 5–25

  6. Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM (2015) Global epidemiology of Campylobacter infection. Clin Microbiol Rev 28:687–720. https://doi.org/10.1128/CMR.00006-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nachamkin I, Nguyen P (2017) Isolation of Campylobacter species from stool samples by use of a filtration method: assessment from a United States-based population. J Clin Microbiol 55:2204–2207. https://doi.org/10.1128/JCM.00332-17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu F, Ma R, Wang Y, Zhang L (2018) The clinical importance of Campylobacter concisus and other human hosted Campylobacter species. Front Cell Infect Microbiol 8:243. https://doi.org/10.3389/fcimb.2018.00243

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nielsen HL, Ejlertsen T, Nielsen H (2015) Polycarbonate filtration technique is noninferior to mCCDA for isolation of Campylobacter species from stool samples. Diagn Microbiol Infect Dis 83:11–12. https://doi.org/10.1016/j.diagmicrobio.2015.05.008

    Article  CAS  PubMed  Google Scholar 

  10. Butzler J-P (2004) Campylobacter, from obscurity to celebrity. Clin Microbiol Infect 10:868–876. https://doi.org/10.1111/j.1469-0691.2004.00983.x

    Article  PubMed  Google Scholar 

  11. Lastovica AJ (2006) Emerging Campylobacter spp.: the tip of the iceberg. Clin Microbiol Newsl 28:49–56. https://doi.org/10.1016/j.clinmicnews.2006.03.004

    Article  Google Scholar 

  12. Vandenberg O, Dediste A, Houf K, Ibekwem S, Souayah H, Cadranel S et al (2004) Arcobacter species in humans. Emerg Infect Dis 10:1863–1867. https://doi.org/10.3201/eid1010.040241

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fitzgerald C, Whichard J, Nachamkin I (2008) Chapter 12: diagnosis and antimicrobial susceptibility of Campylobacter species. In: Campylobacter. ASM Press. p. 227–43

  14. Moore JE (2000) Comparison of basal broth media for the optimal laboratory recovery of Campylobacter jejuni and Campylobacter coli. Ir J Med Sci 169:187–189

    Article  CAS  PubMed  Google Scholar 

  15. Lynch OA, Cagney C, McDowell DA, Duffy G (2010) A method for the growth and recovery of 17 species of Campylobacter and its subsequent application to inoculated beef. J Microbiol Methods 83:1–7. https://doi.org/10.1016/j.mimet.2010.06.003

    Article  CAS  PubMed  Google Scholar 

  16. Bovill RA, Mackey BM (1997) Resuscitation of “non-culturable” cells from aged cultures of Campylobacter jejuni. Microbiol Read Engl 143(Pt 5):1575–1581. https://doi.org/10.1099/00221287-143-5-1575

    Article  CAS  Google Scholar 

  17. Ng LK, Stiles ME, Taylor DE (1985) Comparison of basal media for culturing Campylobacter jejuni and Campylobacter coli. J Clin Microbiol 21:226–230

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hsieh Y-H, Simpson S, Kerdahi K, Sulaiman IM (2018) A comparative evaluation study of growth conditions for culturing the isolates of Campylobacter spp. Curr Microbiol 75:71–78. https://doi.org/10.1007/s00284-017-1351-6

    Article  CAS  PubMed  Google Scholar 

  19. Dekeyser P, Gossuin-Detrain M, Butzler JP, Sternon J (1972) Acute enteritis due to related vibrio: first positive stool cultures. J Infect Dis 125:390–392

    Article  CAS  PubMed  Google Scholar 

  20. Speegle L, Miller ME, Backert S, Oyarzabal OA (2009) Use of cellulose filters to isolate Campylobacter spp. from naturally contaminated retail broiler meat. J Food Prot 72:2592–2596

    Article  PubMed  Google Scholar 

  21. Nielsen HL, Engberg J, Ejlertsen T, Nielsen H (2013) Comparison of polycarbonate and cellulose acetate membrane filters for isolation of Campylobacter concisus from stool samples. Diagn Microbiol Infect Dis 76:549–550. https://doi.org/10.1016/j.diagmicrobio.2013.05.002

    Article  CAS  PubMed  Google Scholar 

  22. Goossens H, De Boeck M, Butzler JP (1983) A new selective medium for the isolation of Campylobacter jejuni from human faeces. Eur J Clin Microbiol 2:389–393

    Article  CAS  PubMed  Google Scholar 

  23. López L, Castillo FJ, Clavel A, Rubio MC (1998) Use of a selective medium and a membrane filter method for isolation of Campylobacter species from Spanish paediatric patients. Eur J Clin Microbiol Infect Dis 17:489–492

    Article  PubMed  Google Scholar 

  24. Casanova C, Schweiger A, von Steiger N, Droz S, Marschall J (2015) Campylobacter concisus pseudo-outbreak caused by improved culture conditions. J Clin Microbiol 53:660–662. https://doi.org/10.1128/JCM.02608-14

    Article  PubMed  PubMed Central  Google Scholar 

  25. Humphries RM, Linscott AJ (2015) Laboratory diagnosis of bacterial gastroenteritis. Clin Microbiol Rev 28:3–31. https://doi.org/10.1128/CMR.00073-14

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lastovica AJ, le Roux E (2000) Efficient isolation of Campylobacteria from stools. J Clin Microbiol 38:2798–2799

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Engberg J, On SL, Harrington CS, Gerner-Smidt P (2000) Prevalence of Campylobacter, Arcobacter, Helicobacter, and Sutterella spp. in human fecal samples as estimated by a reevaluation of isolation methods for campylobacters. J Clin Microbiol 38:286–291

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Martiny D, Dediste A, Debruyne L, Vlaes L, Haddou NB, Vandamme P et al (2011) Accuracy of the API Campy system, the Vitek 2 Neisseria-Haemophilus card and matrix-assisted laser desorption ionization time-of-flight mass spectrometry for the identification of campylobacter and related organisms. Clin Microbiol Infect 17:1001–1006. https://doi.org/10.1111/j.1469-0691.2010.03328.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by The Belgian Kids’ Fund for Pediatric Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Tilmanne.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed were in accordance with the ethical standards of our institutional research committee.

Informed consent

Data were totally anonymized before analysis, no consent had to be obtained considering the methodology of the present work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tilmanne, A., Kandet Yattara, H.M., Herpol, M. et al. Multi-step optimization of the filtration method for the isolation of Campylobacter species from stool samples. Eur J Clin Microbiol Infect Dis 38, 859–864 (2019). https://doi.org/10.1007/s10096-019-03479-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-019-03479-1

Keywords

Navigation