Skip to main content

Advertisement

Log in

Adjunctive interferon-γ immunotherapy in a pediatric case of Aspergillus terreus infection

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Aspergillus terreus causes invasive aspergillosis (IA) in immunocompromised patients. Treatment is complicated by intrinsic resistance to amphotericin B and thereby contributing to a high mortality. Therefore, we conducted in vitro studies to investigate the effectivity of adjunctive recombinant interferon-γ immunotherapy. We describe a pediatric patient with A. terreus IA who received adjunctive recombinant interferon-γ (rIFNγ) immunotherapy. In vitro studies were conducted to investigate the capacity of rIFNγ to improve antifungal host defense in terms of fungal killing ability and the release of pro-inflammatory cytokines in cells of the patient as well as healthy controls. An 8-year-old female pediatric patient with leukemia developed A. terreus IA. She clinically deteriorated and had high serum galactomannan levels despite broad antifungal therapy. Therefore, adjunctive immune stimulatory therapy with rIFNγ was initiated. After 3 weeks of treatment, galactomannan levels decreased and the patient clinically showed improvement. Addition of rIFNγ boosted the capacity of monocytes of healthy volunteers to mount TNFα and IL-1β cytokine responses to Escherichia coli LPS, and increased TNFα response to both A. terreus and Aspergillus fumigatus. Monocytes isolated from the patient’s blood demonstrated a similar augmented cytokine induction in response to rIFNγ. In addition, rIFNγ increased the capacity of monocytes from healthy volunteers as well as monocytes from the patient to kill A. terreus spores. Adjuvant immunotherapy with rIFNγ might be a promising additional treatment strategy that could be used to improve outcome in patients with refractory invasive A. terreus infections or other resistant invasive Aspergillus infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kontoyiannis DP, Marr KA, Park BJ et al (2010) Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001-2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin Infect Dis 50(8):1091–1100

    Article  PubMed  Google Scholar 

  2. Wattier RL, Dvorak CC, Hoffman JA et al (2015) A prospective, international cohort study of invasive mold infections in children. J Pediatric Infect Dis Soc 4(4):313–322

    Article  PubMed  Google Scholar 

  3. Steinbach WJ, Benjamin DK Jr, Kontoyiannis DP et al (2004) Infections due to Aspergillus terreus: a multicenter retrospective analysis of 83 cases. Clin Infect Dis 39(2):192–198

    Article  PubMed  Google Scholar 

  4. Baddley JW, Pappas PG, Smith AC et al (2003) Epidemiology of Aspergillus terreus at a university hospital. J Clin Microbiol 41(12):5525–5529

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lewis RE, Cahyame-Zuniga L, Leventakos K et al (2013) Epidemiology and sites of involvement of invasive fungal infections in patients with haematological malignancies: a 20-year autopsy study. Mycoses 56(6):638–645

    Article  PubMed  Google Scholar 

  6. Iwen PC, Rupp ME, Langnas AN et al (1998) Invasive pulmonary aspergillosis due to Aspergillus terreus: 12-year experience and review of the literature. Clin Infect Dis 26(5):1092–1097

    Article  CAS  PubMed  Google Scholar 

  7. Perfect JR, Cox GM, Lee JY et al (2001) The impact of culture isolation of Aspergillus species: a hospital-based survey of aspergillosis. Clin Infect Dis 33(11):1824–1833

    Article  CAS  PubMed  Google Scholar 

  8. Walmsley S, Devi S, King S et al (1993) Invasive Aspergillus infections in a pediatric hospital: a ten-year review. Pediatr Infect Dis J 12(8):673–682

    Article  CAS  PubMed  Google Scholar 

  9. Van Der Linden JW, Warris A, Verweij PE (2011) Aspergillus species intrinsically resistant to antifungal agents. Med Mycol 49(Suppl1):S82–S89

    Article  Google Scholar 

  10. Kathuria S, Sharma C, Singh PK et al (2015) Molecular epidemiology and in-vitro antifungal susceptibility of Aspergillus terreus species complex isolates in Delhi, India: evidence of genetic diversity by amplified fragment length polymorphism and microsatellite typing. PLoS One 10(3):e0118997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rissleger B, Zoran T, Lackner M et al (2017) A prospective international Aspergillus terreus survey: an EFISG, ISHAM and ECMM joint study. Clin Microbiol Infect 23(10):776.e1–776.e5

    Article  Google Scholar 

  12. Pastor FJ, Guarro J (2014) Treatment of Aspergillus terreus infections: a clinical problem not yet resolved. Int J Antimicrob Agents 44(4):281–289

    Article  CAS  PubMed  Google Scholar 

  13. Hachem RY, Kontoyiannis DP, Boktour MR et al (2004) Aspergillus terreus: an emerging amphotericin B-resistant opportunistic mold in patients with hematologic malignancies. Cancer 101(7):1594–1600

    Article  PubMed  Google Scholar 

  14. Lass-Florl C, Griff K, Mayr A et al (2005) Epidemiology and outcome of infections due to Aspergillus terreus: 10-year single centre experience. Br J Haematol 131(2):201–207

    Article  PubMed  Google Scholar 

  15. Hachem R, Gomes MZ, El Helou G et al (2014) Invasive aspergillosis caused by Aspergillus terreus: an emerging opportunistic infection with poor outcome independent of azole therapy. J Antimicrob Chemother 69(11):3148–3155

    Article  CAS  PubMed  Google Scholar 

  16. Inaba H, Greaves M, Mullighan CG (2013) Acute lymphoblastic leukaemia. Lancet 381(9881):1943–1955

    Article  PubMed  Google Scholar 

  17. Treatment study protocol of the Dutch Childhood Oncology Group for children and adolescents (1-19 year) with newly diagnosed acute lymphoblastic leukemia (2017) DCOG ALL-11 Protocol committee

  18. Armstrong-James D, Brown GD, Netea MG et al (2017) Immunotherapeutic approaches to treatment of fungal diseases. Lancet Infect Dis 17(12):e393–e402

    Article  CAS  PubMed  Google Scholar 

  19. Cenci E, Mencacci A, Del Sero G et al (1999) Interleukin-4 causes susceptibility to invasive pulmonary aspergillosis through suppression of protective type I responses. J Infect Dis 180(6):1957–1968

    Article  CAS  PubMed  Google Scholar 

  20. Group TICGDCS (1991) A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. N Engl J Med 324(8):509–516

    Article  Google Scholar 

  21. Poynton CH, Barnes RA, Rees J (1998) Interferon gamma and granulocyte-macrophage colony-stimulating factor for the treatment of hepatosplenic candidosis in patients with acute leukemia. Clin Infect Dis 26(1):239–240

    Article  CAS  PubMed  Google Scholar 

  22. Dignani MC, Rex JH, Chan KW et al (2005) Immunomodulation with interferon-gamma and colony-stimulating factors for refractory fungal infections in patients with leukemia. Cancer 104(1):199–204

    Article  CAS  PubMed  Google Scholar 

  23. Delsing CE, Gresnigt MS, Leentjes J et al (2014) Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: a case series. BMC Infect Dis 14:166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nagai H, Guo J, Choi H et al (1995) Interferon-gamma and tumor necrosis factor-alpha protect mice from invasive aspergillosis. J Infect Dis 172(6):1554–1560

    Article  CAS  PubMed  Google Scholar 

  25. Kullberg BJ, van 't Wout JW, Hoogstraten C et al (1993) Recombinant interferon-gamma enhances resistance to acute disseminated Candida albicans infection in mice. J Infect Dis 168(2):436–443

    Article  CAS  PubMed  Google Scholar 

  26. Al-Zeer MA, Al-Younes HM, Braun PR et al (2009) IFN-gamma-inducible Irga6 mediates host resistance against Chlamydia trachomatis via autophagy. PLoS One 4(2):e4588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kalvakolanu DV, Gade P (2012) IFNG and autophagy: a critical role for the ER-stress mediator ATF6 in controlling bacterial infections. Autophagy 8(11):1673–1674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Klug-Micu GM, Stenger S, Sommer A et al (2013) CD40 ligand and interferon-gamma induce an antimicrobial response against Mycobacterium tuberculosis in human monocytes. Immunology 139(1):121–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sharma G, Dutta RK, Khan MA et al (2014) IL-27 inhibits IFN-gamma induced autophagy by concomitant induction of JAK/PI3 K/Akt/mTOR cascade and up-regulation of Mcl-1 in Mycobacterium tuberculosis H37Rv infected macrophages. Int J Biochem Cell Biol 55:335–347

    Article  CAS  PubMed  Google Scholar 

  30. Sprenkeler EG, Gresnigt MS, van de Veerdonk FL (2016) LC3-associated phagocytosis: a crucial mechanism for antifungal host defence against Aspergillus fumigatus. Cell Microbiol 18(9):1208–1216

    Article  CAS  PubMed  Google Scholar 

  31. The International Chronic Granulomatous Disease Cooperative Study Group (1991) A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. N Engl J Med 324(8):509–516

    Article  Google Scholar 

  32. Marciano BE, Wesley R, De Carlo ES et al (2004) Long-term interferon-gamma therapy for patients with chronic granulomatous disease. Clin Infect Dis 39(5):692–699

    Article  CAS  PubMed  Google Scholar 

  33. Armstrong-James D, Teo IA, Shrivastava S et al (2010) Exogenous interferon-gamma immunotherapy for invasive fungal infections in kidney transplant patients. Am J Transplant 10(8):1796–1803

    Article  CAS  PubMed  Google Scholar 

  34. Arvanitis M, Mylonakis E (2015) Diagnosis of invasive aspergillosis: recent developments and ongoing challenges. Eur J Clin Investig 45(6):646–652

    Article  CAS  Google Scholar 

  35. Van der Linden JW, Arendrup MC, Warris A et al (2015) Prospective multicenter international surveillance of azole resistance in Aspergillus fumigatus. Emerg Infect Dis 21(6):1041–1044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schelenz S, Barnes RA, Barton RC et al (2015) British Society for Medical Mycology best practice recommendations for the diagnosis of serious fungal diseases. Lancet Infect Dis 15(4):461–474

    Article  PubMed  Google Scholar 

  37. Chellapandian D, Lehrnbecher T, Phillips B et al (2015) Bronchoalveolar lavage and lung biopsy in patients with cancer and hematopoietic stem-cell transplantation recipients: a systematic review and meta-analysis. J Clin Oncol 33(5):501–509

    Article  PubMed  Google Scholar 

  38. Weng TF, Wu KH, Wu HP et al (2016) Changes of serum Aspergillus galactomannan during hematopoietic stem cell transplantation in children with prior invasive aspergillosis. Ital J Pediatr 42:30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Neofytos D, Railkar R, Mullane KM et al (2015) Correlation between circulating fungal biomarkers and clinical outcome in invasive aspergillosis. PLoS One 10(6):e0129022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank H.A.L. van der Lee for providing us with photographs of specimens.

Funding

This work was not supported by financial funding or other sources of pharmaceutical or industry support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan W. M. van der Linden.

Ethics declarations

Conflict of interest

J.F.M. received grants from Astellas, Merck, and Basilea. He has been a consultant to Basilea Scynexis and Merck and received speaker fees from Merck, Pfizer, Gilead, TEVA, and United Medical. All other authors declare they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assendorp, E.L., Gresnigt, M.S., Sprenkeler, E.G.G. et al. Adjunctive interferon-γ immunotherapy in a pediatric case of Aspergillus terreus infection. Eur J Clin Microbiol Infect Dis 37, 1915–1922 (2018). https://doi.org/10.1007/s10096-018-3325-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-018-3325-4

Keywords

Navigation