Skip to main content
Log in

Factors impacting unbound vancomycin concentrations in neonates and young infants

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Vancomycin pharmacokinetic (PK) and pharmacodynamic (PD) data in neonates are based on total concentrations. However, only unbound vancomycin is pharmacologically active. The objective was to determine vancomycin protein binding and the covariates impacting unbound vancomycin concentration in neonates and young infants. In neonates and young infants to whom vancomycin was administered intermittently for medical indications, total and unbound vancomycin plasma concentrations were determined using LC-MS/MS. Sampling occurred randomly during vancomycin exposure, covering a broad range of concentrations. Impact of covariates on unbound vancomycin concentration was determined using linear regression. Significant results of the univariate regressions were entered in a stepwise multiple regression. Passing-Bablok regression and Bland-Altman were used to assess the difference between measured and calculated unbound vancomycin concentration. Thirty-seven samples in 33 patients (median (interquartile range) gestational age 35 (29–39) weeks) were collected. Median total and unbound vancomycin concentrations were 14.2 (7.4–20.6) and 13.6 (7.2–22.5) mg/L, respectively. Median unbound fraction was 0.90 (0.77–0.98). Multiple regression revealed total vancomycin concentration (β = 0.884, p < 0.001) and albumin (β = − 0.323, p = 0.007) as most important covariates of unbound vancomycin concentrations, with an R2 adjusted of 0.953 (p < 0.0001). Mean absolute difference between calculated and measured unbound vancomycin was − 0.008 (95% CI − 0.92–0.91) mg/L. The unbound vancomycin fraction in neonates is higher compared to that in children and adults, and total vancomycin concentration and albumin were the most important covariates of unbound vancomycin concentration. Integration of protein binding in future PK/PD analyses is appropriate to optimize vancomycin dosing and to determine population-specific vancomycin PD targets for neonates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Li S, Starkey ES (2016) What do I need to know about glycopeptide antibiotics? Arch Dis Child Educ Pract Ed 101:323–326

    Article  PubMed  CAS  Google Scholar 

  2. de Hoog M, Mouton JW, van den Anker JN (2004) Vancomycin: pharmacokinetics and administration regimens in neonates. Clin Pharmacokinet 43:417–440

    Article  PubMed  Google Scholar 

  3. Pacifici GM, Allegaert K (2012) Clinical pharmacokinetics of vancomycin in the neonate: a review. Clinics (Sao Paulo) 67:831–837

    Article  Google Scholar 

  4. Vandendriessche A, Allegaert K, Cossey V, Naulaers G, Saegeman V, Smits A (2014) Prospective validation of neonatal vancomycin dosing regimens is urgently needed. Curr Ther Res Clin Exp 76:51–57

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Bhongsatiern J, Stockmann C, Roberts JK, Yu T, Korgenski KE, Spigarelli MG, Desai PB, Sherwin CM (2015) Evaluation of vancomycin use in late-onset neonatal sepsis using the area under the concentration-time curve to the minimum inhibitory concentration >/=400 target. Ther Drug Monit 37:756–765

  6. Petrie K, O'Brien C, Bhushan S, Tonna A (2015) Neonatal vancomycin trough level audit using British National Formulary for Children dosing. Arch Dis Child Fetal Neonatal Ed 100:F278–F279

    Article  PubMed  Google Scholar 

  7. Jacqz-Aigrain E, Leroux S, Zhao W, van den Anker JN, Sharland M (2015) How to use vancomycin optimally in neonates: remaining questions. Expert Rev Clin Pharmacol 8:635–648

    Article  PubMed  CAS  Google Scholar 

  8. Sammons HM, Starkey E (2013) Vancomycin use in neonates and children: evidence-based practice is needed. Arch Dis Child 98:447–448

    Article  PubMed  Google Scholar 

  9. Frymoyer A, Lee S, Bonifacio SL, Meng L, Lucas SS, Guglielmo BJ, Sun Y, Verotta D (2013) Every 36-h gentamicin dosing in neonates with hypoxic-ischemic encephalopathy receiving hypothermia. J Perinatol 33:778–782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Oyaert M, Spriet I, Allegaert K, Smits A, Vanstraelen K, Peersman N, Wauters J, Verhaegen J, Vermeersch P, Pauwels S (2015) Factors impacting unbound vancomycin concentrations in different patient populations. Antimicrob Agents Chemother 59:7073–7079

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Anderson BJ, Allegaert K, van den Anker JN, Cossey V, Holford NH (2007) Vancomycin pharmacokinetics in preterm neonates and the prediction of adult clearance. Br J Clin Pharmacol 63:75–84

    Article  PubMed  CAS  Google Scholar 

  12. Ackerman BH, Taylor EH, Olsen KM, Abdel-Malak W, Pappas AA (1988) Vancomycin serum protein binding determination by ultrafiltration. Drug Intell Clin Pharm 22:300–303

    Article  PubMed  CAS  Google Scholar 

  13. Butterfield JM, Patel N, Pai MP, Rosano TG, Drusano GL, Lodise TP (2011) Refining vancomycin protein binding estimates: identification of clinical factors that influence protein binding. Antimicrob Agents Chemother 55:4277–4282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Oyaert M, Peersman N, Kieffer D, Deiteren K, Smits A, Allegaert K, Spriet I, Van Eldere J, Verhaegen J, Vermeersch P, Pauwels S (2015) Novel LC-MS/MS method for plasma vancomycin: comparison with immunoassays and clinical impact. Clin Chim Acta 441:63–70

    Article  PubMed  CAS  Google Scholar 

  15. Stove V, Coene L, Carlier M, De Waele JJ, Fiers T, Verstraete AG (2015) Measuring unbound versus total vancomycin concentrations in serum and plasma: methodological issues and relevance. Ther Drug Monit 37:180–187

    Article  PubMed  CAS  Google Scholar 

  16. De Cock PA, Desmet S, De Jaeger A, Biarent D, Dhont E, Herck I, Vens D, Colman S, Stove V, Commeyne S, Vande Walle J, De Paepe P (2017) Impact of vancomycin protein binding on target attainment in critically ill children: back to the drawing board? J Antimicrob Chemother 72(3):801–804

    PubMed  Google Scholar 

  17. Crandon JL, MacVane SH, Nicolau DP (2013) Clinical laboratory-based assay methodologies may underestimate and increase variability of vancomycin protein binding in hospitalized patients. Pharmacotherapy 34(2):203–209

    Article  PubMed  CAS  Google Scholar 

  18. Kees MG, Wicha SG, Seefeld A, Kees F, Kloft C (2014) Unbound fraction of vancomycin in intensive care unit patients. J Clin Pharmacol 54:318–323

    Article  PubMed  CAS  Google Scholar 

  19. Berthoin K, Ampe E, Tulkens PM, Carryn S (2009) Correlation between free and total vancomycin serum concentrations in patients treated for Gram-positive infections. Int J Antimicrob Agents 34:555–560

    Article  PubMed  CAS  Google Scholar 

  20. Ampe E, Delaere B, Hecq JD, Tulkens PM, Glupczynski Y (2013) Implementation of a protocol for administration of vancomycin by continuous infusion: pharmacokinetic, pharmacodynamic and toxicological aspects. Int J Antimicrob Agents 41:439–446

    Article  PubMed  CAS  Google Scholar 

  21. Rodvold KA, Blum RA, Fischer JH, Zokufa HZ, Rotschafer JC, Crossley KB, Riff LF (1988) Vancomycin pharmacokinetics in patients with various degrees of renal function. Antimicrob Agents Chemother 32:848–852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Tan CC, Lee HS, Ti TY, Lee EJ (1990) Pharmacokinetics of intravenous vancomycin in patients with end-stage renal failure. Ther Drug Monit 12:29–34

    Article  PubMed  CAS  Google Scholar 

  23. Zokufa HZ, Solem LD, Rodvold KA, Crossley KB, Fischer JH, Rotschafer JC (1989) The influence of serum albumin and alpha 1-acid glycoprotein on vancomycin protein binding in patients with burn injuries. J Burn Care Rehabil 10:425–428

    Article  PubMed  CAS  Google Scholar 

  24. Sando M, Sato Y, Iwata S, Akita H, Sunakawa K (2004) In vitro protein binding of teicoplanin to neonatal serum. J Infect Chemother 10:280–283

    Article  PubMed  CAS  Google Scholar 

  25. Smits A, Kulo A, Verbesselt R, Naulaers G, de Hoon J, Vermeersch P, Allegaert K (2012) Cefazolin plasma protein binding and its covariates in neonates. Eur J Clin Microbiol Infect Dis 31:3359–3365

    Article  PubMed  CAS  Google Scholar 

  26. Pullen J, Stolk LM, Degraeuwe PL, van Tiel FH, Neef C, Zimmermann LJ (2007) Protein binding of flucloxacillin in neonates. Ther Drug Monit 29:279–283

    Article  PubMed  CAS  Google Scholar 

  27. Schmidt S, Gonzalez D, Derendorf H (2010) Significance of protein binding in pharmacokinetics and pharmacodynamics. J Pharm Sci 99:1107–1122

    Article  PubMed  CAS  Google Scholar 

  28. Roberts JA, Pea F, Lipman J (2012) The clinical relevance of plasma protein binding changes. Clin Pharmacokinet 52:1–8

    Article  CAS  Google Scholar 

  29. Zeitlinger MA, Derendorf H, Mouton JW, Cars O, Craig WA, Andes D, Theuretzbacher U (2011) Protein binding: do we ever learn? Antimicrob Agents Chemother 55:3067–3074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Sinkeler FS, de Haan TR, Hodiamont CJ, Bijleveld YA, Pajkrt D, Mathot RA (2014) Inadequate vancomycin therapy in term and preterm neonates: a retrospective analysis of trough serum concentrations in relation to minimal inhibitory concentrations. BMC Pediatr 14:193

    Article  PubMed  PubMed Central  Google Scholar 

  31. Antimicrobial wild type distribution of microorganisms. European Committee on Antimicrobial Susceptibility Testing. Data from the EUCAST MIC distribution website, last accessed 21–01-2018. http://mic.eucast.org/Eucast2/

  32. Padari H, Oselin K, Tasa T, Metsvaht T, Loivukene K, Lutsar I (2016) Coagulase negative staphylococcal sepsis in neonates: do we need to adapt vancomycin dose or target? BMC Pediatr 16:206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. European Committee on Antimicrobial Susceptibility Testing. Data from the EUCAST website, Rationale for the EUCAST vancomycin clinical breakpoints, last accessed 21–01-2018 http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Rationale_documents/Vancomycin_rationale_2.1

  34. Ulldemolins M, Roberts JA, Rello J, Paterson DL, Lipman J (2011) The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin Pharmacokinet 50:99–110

    Article  PubMed  CAS  Google Scholar 

  35. Smits A, Roberts JA, Vella-Brincat JWA, Allegaert K (2014) Cefazolin plasma protein binding in different human populations: more than cefazolin-albumin interaction. Int J Antimicrob Agents 43:195–200

    Article  CAS  Google Scholar 

  36. Notarianni LJ (1990) Plasma protein binding of drugs in pregnancy and in neonates. Clin Pharmacokinet 18:20–36

    Article  PubMed  CAS  Google Scholar 

  37. Stoop JW, Zegers BJ, Sander PC, Ballieux RE (1969) Serum immunoglobulin levels in healthy children and adults. Clin Exp Immunol 4:101–112

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Alkan OS, Ozer EA, Kose S, Ilhan O, Ozturk C, Sutcuoglu S (2016) Reference values of serum IgG and IgM levels in preterm and term newborns. J Matern Fetal Neonatal Med 29:972–976

    Article  CAS  Google Scholar 

  39. Ballow M, Cates KL, Rowe JC, Goetz C, Desbonnet C (1986) Development of the immune system in very low birth weight (less than 1500 g) premature infants: concentrations of plasma immunoglobulins and patterns of infections. Pediatr Res 20:899–904

    Article  PubMed  CAS  Google Scholar 

  40. Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, Lemons JA, Donovan EF, Stark AR, Tyson JE, Oh W, Bauer CR, Korones SB, Shankaran S, Laptook AR, Stevenson DK, Papile LA, Poole WK (2002) Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics 110:285–291

    Article  PubMed  Google Scholar 

Download references

Funding

K. Allegaert has been supported by the Fund for Scientific Research, Flanders (Belgium) (FWO Vlaanderen), by a fundamental Clinical Investigatorship (1800214N). The research activities of A. Smits, S. Pauwels, and I. Spriet were supported by the Clinical Research and Education Council of the University Hospitals Leuven. The research was further facilitated by the “Agency for Innovation, Science and Technology in Flanders” (IWT) through the “SAFEDRUG” project (IWT/SBO 130033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Smits.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed parental consent was obtained for all included participants.

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smits, A., Pauwels, S., Oyaert, M. et al. Factors impacting unbound vancomycin concentrations in neonates and young infants. Eur J Clin Microbiol Infect Dis 37, 1503–1510 (2018). https://doi.org/10.1007/s10096-018-3277-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-018-3277-8

Keywords

Navigation