Advertisement

Recent advances in rapid pathogen detection method based on biosensors

  • Ying Chen
  • Zhenzhen Wang
  • Yingxun Liu
  • Xin Wang
  • Ying Li
  • Ping Ma
  • Bing Gu
  • Hongchun Li
Review

Abstract

As strain variation and drug resistance become more pervasive, the prevention and control of infection have been a serious problem in recent years. The detection of pathogen is one of the most important parts of the process of diagnosis. Having a series of advantages, such as rapid response, high sensitivity, ease of use, and low cost, biosensors have received much attention and been studied deeply. Moreover, relying on its characteristics of small size, real time, and multiple analyses, biosensors have developed rapidly and used widely and are expected to be applied for microbiological detection in order to meet higher accuracy required by clinical diagnosis. The main goal of this contribution is not to simply collect and list all papers related to pathogen detection based on biosensors published recently, but to discuss critically the development and application of many kinds of biosensors such as electrochemical (amperometric, impedimetric, potentiometric, and conductometric), optical (fluorescent, fibre optic and surface plasmon resonance), and piezoelectric (quartz crystal microbalances and atomic force microscopy) biosensors in pathogen detection as well as the comparisons with the existing clinical detection methods (traditional culture, enzyme-linked immunosorbent assay, polymerase chain reaction, and mass spectrometry).

Keywords

Biosensor Pathogen Medical detection methods Comparison 

Notes

Author contributions

Ying Chen and Xin Wang conceived the essay; Zhenzhen Wang researched the literature and wrote the manuscript; Ying Li and Yingxun Liu made the tables and figures; and Ping Ma, Hongchun Li, and Bing Gu revised the manuscript.

Funding information

The work was supported by grants from the National Natural Science Foundation of China (81702103), Jiangsu Provincial Natural Science Foundation (BK20170252), Projects for Jiangsu Provincial Young Medical Talents (QNRC2016780), General Program of the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (16KJD320005), and Xuzhou Science and Technology Planning Project (KC16SY157).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Unkel S, Farrington CP, Garthwaite PH, Robertson C, Andrews N (2012) Statistical methods for the prospective detection of infectious disease outbreaks: a review. J R Stat Soc 175(1):49–82CrossRefGoogle Scholar
  2. 2.
    Kallonen T, He Q (2014) Strain variation and evolution postvaccination. Expert Rev Vaccines 8(7):863–875CrossRefGoogle Scholar
  3. 3.
    Herzog T, Chromik AM, Uhl W (2010) Treatment of complicated intra-abdominal infections in the era of multi-drug resistant bacteria. Eur J Med Res 15(12):525–532PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Pathengay A, Moreker MR, Puthussery R, Ambatipudi S, Jalali S, Majji AB, Mathai A, Husssain N, Dave V, Sharma S, Das T (2011) Clinical and microbiologic review of culture-proven endophthalmitis caused by multidrug-resistant bacteria in patients seen at a tertiary eye care center in southern India. Retina 31(9):1806–1811PubMedCrossRefGoogle Scholar
  5. 5.
    Bark CM, Gitta P, Ogwang S, Nsereko M, Thiel BA, Boom WH, Eisenach KD, Joloba ML, Johnson JL (2013) Comparison of time to positive and colony counting in an early bactericidal activity study of anti-tuberculosis treatment. Int J Tuberc Lung Dis 17(11):1448PubMedCrossRefGoogle Scholar
  6. 6.
    Dietze R, Hadad DJ, Mcgee B, Molino LP, Maciel EL, Peloquin CA, Johnson DF, Debanne SM, Eisenach K, Boom WH, Palac M, Johnson JL (2008) Early and extended early bactericidal activity of linezolid in pulmonary tuberculosis. Am J Respir Crit Care Med 178(11):1180PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Amit S, Somayyeh P, Stephane E (2013) Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors 13(2):1763–1786CrossRefGoogle Scholar
  8. 8.
    Chang SS, Hsieh WH, Liu TS, Lee SH, Wang CH, Chou HC, Yeo YH, Tseng CP, Lee CC (2013) Multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis—a systemic review and meta-analysis. PLoS One 8(5):e62323PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Cheng ZJ, Hu LH, Fu WR, Li YR (2007) Rapid quantification of hepatitis B virus DNA by direct real-time PCR from serum without DNA extraction. J Med Microbiol 56(6):766–771PubMedCrossRefGoogle Scholar
  10. 10.
    De Crignis E, Re MC, Cimatti L, Lisa Z, Davide G (2010) HIV-1 and HCV detection in dried blood spots by SYBR green multiplex real-time RT-PCR. J Virol Methods 165(1):51–56PubMedCrossRefGoogle Scholar
  11. 11.
    Sharma A (2012) Study with Bactec 460 system & PCR for the detection of tuberculosis. Lap Lambert Academic Publishing, FörlagGoogle Scholar
  12. 12.
    Samain C, Thibault M, Boitiaux JF, Martres P, Pham S, Senechal F et al. (2012) Real-time PCR for diagnosis of Mycoplasma pneumoniae in community-acquired pneumonia. American Thoracic Society 2012 International Conference, May 18–23, 2012 • San Francisco, California pp A5242–A5242Google Scholar
  13. 13.
    Gatto F, Cassina G, Broccolo F, Morreale G, Lanino E, Di ME, Vardas E, Bernasconi D, Buttò S (2011) A multiplex calibrated real-time PCR assay for quantitation of DNA of EBV-1 and 2. J Virol Methods 178(1–2):98–105PubMedCrossRefGoogle Scholar
  14. 14.
    Rozendaal L, Walboomers JM, van der Linden JC, Voorhorst FJ, Kenemans P, Helmerhorst TJ, van Ballegooijen M, Meijer CJ (2015) PCR-based high-risk HPV test in cervical cancer screening gives objective risk assessment of women with cytomorphologically normal cervical smears. Int J Cancer 68(6):766–769CrossRefGoogle Scholar
  15. 15.
    Hopkins MJ, Smith G, Hart IJ, Alloba F (2012) Screening tests for Chlamydia trachomatis or Neisseria gonorrhoeae using the cobas 4800 PCR system do not require a second test to confirm: an audit of patients issued with equivocal results at a sexual health clinic in the northwest of England, UK. Sex Transm Infect 88(7):495–497PubMedCrossRefGoogle Scholar
  16. 16.
    Roberts CH, Last A, Molinagonzalez S, Cassama E, Butcher R, Nabicassa M, McCarthy E, Burra SE, Mabey DC, Bailey RL, Hollanda MJ (2013) Development and evaluation of a next-generation digital PCR diagnostic assay for ocular Chlamydia trachomatis infections. J Clin Microbiol 51(7):2195–2203PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Vancutsem E, Soetens O, Breugelmans M, Foulon W, Naessens A (2011) Modified real-time PCR for detecting, differentiating, and quantifying Ureaplasma urealyticum and Ureaplasma parvum. J Mol Diagn JMD 13(2):206–212PubMedCrossRefGoogle Scholar
  18. 18.
    Bennett S, Carman WF, Gunson RN (2013) The development of a multiplex real-time PCR for the detection of herpes simplex virus 1 and 2, varizella zoster virus, adenovirus and Chlamydia trachomatis from eye swabs. J Virol Methods 189(1):143–147PubMedCrossRefGoogle Scholar
  19. 19.
    Choudhary A, Pati SK, Patro RK, Deorari AK, Dar L (2015) Comparison of conventional, immunological and molecular techniques for the diagnosis of symptomatic congenital human cytomegalovirus infection in neonates and infants. Indian J Med Microbiol 33(Suppl(2)):15PubMedGoogle Scholar
  20. 20.
    Heymans R, Helm JJVD, Vries HJCD, Fennema HSA, Coutinho RA, Bruisten SM (2010) Clinical value of treponema pallidum real-time PCR for diagnosis of syphilis. J Clin Microbiol 48(2):497–502PubMedCrossRefGoogle Scholar
  21. 21.
    Rimbara E, Sasatsu M, Graham DY (2013) PCR detection of Helicobacter pylori in clinical samples. Methods Mol Biol 943:279PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Ramachandran S, Xia GL, Ganova-Raeva LM, Nainan OV, Khudyakov Y (2008) End-point limiting-dilution real-time PCR assay for evaluation of hepatitis C virus quasispecies in serum: performance under optimal and suboptimal conditions. J Virol Methods 151(2):217–224PubMedCrossRefGoogle Scholar
  23. 23.
    Ciçek C, Bayram N, Anıl M, Gülen F, Pullukçu H, Saz EU et al (2014) Simultaneous detection of respiratory viruses and influenza A virus subtypes using multiplex PCR. Mikrobiyol Bül 48(4):652–660PubMedCrossRefGoogle Scholar
  24. 24.
    Goffard A, Beugin AS, Hober D, Ogiez J, Dewilde A (2008) Development of duplex real-time RT-PCR for detection of influenza virus A and B. Pathol Biol 56(7–8):482PubMedCrossRefGoogle Scholar
  25. 25.
    Jia L (2012) Detection rate of enterovirus 71 in different types of samples by real-time fluorescence quantitative PCR. Chinese Journal of Nosocomiology 22(05):1092–1094Google Scholar
  26. 26.
    Nielsen AC, Böttiger B, Midgley SE, Nielsen LP (2013) A novel enterovirus and parechovirus multiplex one-step real-time PCR-validation and clinical experience. J Virol Methods 193(2):359–363PubMedCrossRefGoogle Scholar
  27. 27.
    Morisset D, Stebih D, Cankar K, Zel J, Gruden K (2008) Alternative DNA amplification methods to PCR and their application in GMO detection: a review. Eur Food Res Technol 227(5):1287–1297CrossRefGoogle Scholar
  28. 28.
    Hamzeiy H, Cox J (2017) What computational non-targeted mass spectrometry-based metabolomics can gain from shotgun proteomics. Curr Opin Biotechnol 43:141–146PubMedCrossRefGoogle Scholar
  29. 29.
    Sauer S, Kliem M (2010) Mass spectrometry tools for the classification and identification of bacteria. Nat Rev Microbiol 8(1):74–82PubMedCrossRefGoogle Scholar
  30. 30.
    Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28(2):232–254PubMedCrossRefGoogle Scholar
  31. 31.
    Arora P, Sindhu A, Dilbaghi N, Chaudhury A (2011) Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron 28(1):1–12PubMedCrossRefGoogle Scholar
  32. 32.
    Xu M, Wang R, Li Y (2016) Rapid detection of Escherichia coli, O157:H7 and Salmonella, Typhimurium in foods using an electrochemical immunosensor based on screen-printed interdigitated microelectrode and immunomagnetic separation. Heart Rhythm 148(8):200–208Google Scholar
  33. 33.
    Qureshi A, Gurbuz Y, Niazi JH (2012) Biosensors for cardiac biomarkers detection: a review. Sensors Actuators B Chem 171–172(8):62–76CrossRefGoogle Scholar
  34. 34.
    Salam F, Tothill IE (2009) Detection of Salmonella Typhimurium using an electrochemical immunosensor. Biosens Bioelectron 24(8):2630PubMedCrossRefGoogle Scholar
  35. 35.
    Vidal JC, Bonel L, Ezquerra A, Hernández S, Bertolín JR, Cubel C, Castillo JR (2013) Electrochemical affinity biosensors for detection of mycotoxins: a review. Biosens Bioelectron 49(4):146PubMedCrossRefGoogle Scholar
  36. 36.
    Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26(5):1788PubMedCrossRefGoogle Scholar
  37. 37.
    Holford TR, Davis F, Higson SP (2012) Recent trends in antibody based sensors. Biosens Bioelectron 34(1):12PubMedCrossRefGoogle Scholar
  38. 38.
    Burcu BE, Kemal SM (2015) Applications of electrochemical immunosensors for early clinical diagnostics. Talanta 132:162–174CrossRefGoogle Scholar
  39. 39.
    Miso P, Shen-Long T, Chen W (2013) Microbial biosensors: engineered microorganisms as the sensing machinery. Sensors 13(5):5777–5795CrossRefGoogle Scholar
  40. 40.
    Arora N (2013) Recent advances in biosensors technology: a review. Octa J Biosci 1(2):147–150Google Scholar
  41. 41.
    Ansari AA, Alhoshan M, Alsalhi MS, Aldwayyan AS (2010) Prospects of nanotechnology in clinical immunodiagnostics. Sensors 10(7):6535–6581PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lazcka O, Del Campo FJ, Muñoz FX (2007) Pathogen detection: a perspective of traditional methods and biosensors. Biosens Bioelectron 22(7):1205PubMedCrossRefGoogle Scholar
  43. 43.
    Bauch M, Toma K, Toma M, Zhang QW, Dostalek J (2014) Plasmon-enhanced fluorescence biosensors: a review. Plasmonics 9(4):781–799PubMedCrossRefGoogle Scholar
  44. 44.
    Shen L (2011) Biocompatible polymer/quantum dots hybrid materials: current status and future developments. J Funct Biomater 2(4):355PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Li B, Yu Q, Duan Y (2015) Fluorescent labels in biosensors for pathogen detection. Crit Rev Biotechnol 35(1):82PubMedCrossRefGoogle Scholar
  46. 46.
    Xue X, Pan J, Xie H, Wang J, Zhang S (2009) Fluorescence detection of total count of Escherichia coli and Staphylococcus aureus on water-soluble CDse quantum dots coupled with bacteria. Talanta 77(5):1808–1813PubMedCrossRefGoogle Scholar
  47. 47.
    Xue X, Wang J, Sun M, Wang Z, Mei L (2012) Detection of live/dead Staphylococcus aureus cells based on CDse quantum dots and propidium iodide fluorescent labeling. Afr J Herpetol 6(12):21–32Google Scholar
  48. 48.
    Wang BB, Wang Q, Jin YG, Ma MH, Cai ZX (2015) Two-color quantum dots-based fluorescence resonance energy transfer for rapid and sensitive detection of Salmonella, on eggshells. J Photochem Photobiol A Chem 299:131–137CrossRefGoogle Scholar
  49. 49.
    Mao XJ, Zheng HZ, Long YJ, Du J, Hao JY, Wang LL, Zhou DB (2010) Study on the fluorescence characteristics of carbon dots. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy 75(2):553CrossRefGoogle Scholar
  50. 50.
    Duan N, Wu S, Dai S, Miao T, Chen J, Wang Z (2015) Simultaneous detection of pathogenic bacteria using an aptamer-based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Microchim Acta 182(5–6):917–923CrossRefGoogle Scholar
  51. 51.
    Caygill RL, Blair GE, Millner PA (2010) A review on viral biosensors to detect human pathogens. Anal Chim Acta 681(1–2):8PubMedCrossRefGoogle Scholar
  52. 52.
    Zibaii MI, Kazemi A, Latifi H, Azar MK, Hosseini SM, Ghezelaiagh MH (2010) Measuring bacterial growth by refractive index tapered fiber optic biosensor. J Photochem Photobiol B Biol 101(3):313–320CrossRefGoogle Scholar
  53. 53.
    Ohk SH, Koo OK, Sen T, Yamamoto CM, Bhunia AK (2010) Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J Appl Microbiol 109(3):808PubMedCrossRefGoogle Scholar
  54. 54.
    Bharadwaj R, Sai V (2011) Evanescent wave absorbance-based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength. Biosens Bioelectron 26(7):3367PubMedCrossRefGoogle Scholar
  55. 55.
    Xiao R, Rong Z, Long F, Liu Q (2014) Portable evanescent wave fiber biosensor for highly sensitive detection of Shigella. Spectrochim Acta A Mol Biomol Spectrosc 132(21):1–5PubMedCrossRefGoogle Scholar
  56. 56.
    Sobarzo A, Paweska JT, Herrmann S, Amir T, Marks RS, Lobel L (2007) Optical fiber immunosensor for the detection of IgG antibody to Rift Valley fever virus in humans. J Virol Methods 146(1–2):327PubMedCrossRefGoogle Scholar
  57. 57.
    Petrosova A, Konry T, Cosnier S, Trakht I, Lutwama J, Rwaguma E, Chepurnov A, Mühlberger E, Lobel L, Marks RS (2007) Development of a highly sensitive, field operable biosensor for serological studies of Ebola virus in central Africa. Sensors Actuators B Chem 122(2):578–586CrossRefGoogle Scholar
  58. 58.
    Atias D, Liebes Y, Chalifa-Caspi V, Bremand L, Lobel L, Marks RS, Dussart P (2009) Chemiluminescent optical fiber immunosensor for the detection of IgM antibody to dengue virus in humans. Sensors Actuators B Chem 140(1):206–215CrossRefGoogle Scholar
  59. 59.
    Janssen KPF, Knez K, Vanysacker L, Schrooten J, Spasic D, Lammertyn J (2012) Enabling fiber optic serotyping of pathogenic bacteria through improved anti-fouling functional surfaces. Nanotechnology 23(23):235503–235509(7)PubMedCrossRefGoogle Scholar
  60. 60.
    Leung A, Shankar PM, Mutharasan R (2007) A review of fiber-optic biosensors. Sensors Actuators B Chem 125(2):688–703CrossRefGoogle Scholar
  61. 61.
    Homola J, Mrkvová K, Vala M (2009) Surface plasmon resonance biosensors for detection of foodborne pathogens and toxins. Proc SPIE-Int Soc Opt Eng 7167(5):716705–716710Google Scholar
  62. 62.
    Li X, Chen Y, Zhao J, Shu F (2005) Development of surface plasmon resonance biosensor research. Chin J Pharm Anal 25(5):1399–1403Google Scholar
  63. 63.
    Fratamico PM, Strobaugh TP, Medina MB, Gehring AG (1998) Detection of Escherichia coli, O157:H7 using a surface plasmon resonance biosensor. Biotechnol Tech 12(7):571–576CrossRefGoogle Scholar
  64. 64.
    Fratamico PM, Strobaugh TP, Medina MB, Gehring AG (1998) A surface plasmon resonance biosensor for real-time immunologic detection of Escherichia coli, O157:H7. In: Tunick MH, Palumbo SA, Fratamico PM (eds) New techniques in the analysis of foods. Springer, BostonGoogle Scholar
  65. 65.
    Ekariyani NY, Wardani DP, Suharyadi E, Daryono BS, Abraha K (2016) The use of Fe3O4 magnetic nanoparticles as the active layer to detect plant’s DNA with surface plasmon resonance (SPR) based biosensor. AIP Conf Proc 1755(1):150016CrossRefGoogle Scholar
  66. 66.
    Shankaran DR, Gobi KV, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensors Actuators B Chem 121(1):158–177CrossRefGoogle Scholar
  67. 67.
    Bera M, Ray M (2009) Precise detection and signature of biological/chemical samples based on surface plasmon resonance (SPR). J Opt 38(4):232–248CrossRefGoogle Scholar
  68. 68.
    Haughey SA, Campbell K, Yakes BJ, Prezioso SM, Degrasse SL, Kawatsu K, Elliott CT (2011) Comparison of biosensor platforms for surface plasmon resonance based detection of paralytic shellfish toxins. Talanta 85(1):519–526PubMedCrossRefGoogle Scholar
  69. 69.
    Rastegarzadeh S, Rezaei ZB (2013) Environmental assessment of 2-mercaptobenzimidazole based on the surface plasmon resonance band of gold nanoparticles. Environ Monit Assess 185(11):9037PubMedCrossRefGoogle Scholar
  70. 70.
    Zheng R, Cameron BD (2011) Development of a molecularly imprinted polymer-based surface plasmon resonance sensor for theophylline monitoring. Proc SPIE 7911(4):131–149Google Scholar
  71. 71.
    Olaru A, Bala C, Jaffrezic-Renault N, Aboul-Enein HY (2015) Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit Rev Anal Chem 45(2):97PubMedCrossRefGoogle Scholar
  72. 72.
    Liu JT, Lin PS, Hsin YM, Tsai JZ, Chen WY (2011) Surface plasmon resonance biosensor for microalbumin detection. J Taiwan Inst Chem Eng 42(5):696–700CrossRefGoogle Scholar
  73. 73.
    Vaisocherová H, Mrkvová K, Piliarik M, Jinoch P, Steinbachová M, Homola J (2007) Surface plasmon resonance biosensor for direct detection of antibody against Epstein-Barr virus. Biosens Bioelectron 22(6):1020PubMedCrossRefGoogle Scholar
  74. 74.
    Law WC, Yong KT, Baev A, Prasad PN (2011) Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement. ACS Nano 5(6):4858PubMedCrossRefGoogle Scholar
  75. 75.
    Tawil N, Sacher E, Mandeville R, Meunier M (2012) Surface plasmon resonance detection of E. coli, and methicillin-resistant S. aureus, using bacteriophages. Biosens Bioelectron 37(1):24–29PubMedCrossRefGoogle Scholar
  76. 76.
    Chen Z, Liu N, Yang HW, Zhang HT, Yang YY, Hu YY, Wang S, Ma QM (2012) U.S. Patent No. 8,168,379. U.S. Patent and Trademark Office, Washington, DCGoogle Scholar
  77. 77.
    Kaur G, Paliwal A, Tomar M, Gupta V (2015) Detection of Neisseria meningitidis using surface plasmon resonance-based DNA biosensor. Biosens Bioelectron 78:106PubMedCrossRefGoogle Scholar
  78. 78.
    Shevchenko Y, Francis TJ, Blair DA, Walsh R, DeRosa MC, Albert J (2011) In situ biosensing with a surface plasmon resonance fiber grating aptasensor. Anal Chem 83(18):7027–7034PubMedCrossRefGoogle Scholar
  79. 79.
    Liang G, Luo Z, Liu K, Wang Y, Dai J, Duan Y (2016) Fiber optic surface plasmon resonance-based biosensor technique: fabrication, advancement, and application. Crit Rev Anal Chem 46(3):213–223PubMedCrossRefGoogle Scholar
  80. 80.
    Arcas ADS, Dutra FDS, Allil RCSB, Werneck MM (2018) Surface plasmon resonance and bending loss-based u-shaped plastic optical fiber biosensors. Sensors 18(2):648PubMedCentralCrossRefGoogle Scholar
  81. 81.
    Grieshaber D, Mackenzie R, Vörös J, Reimhult E (2008) Electrochemical biosensors—sensor principles and architectures. Sensors 8(3):1400PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Tawil N, Sacher E, Mandeville R, Meunier M (2014) Bacteriophages: biosensing tools for multi-drug resistant pathogens. Analyst 139(6):1224–1236PubMedCrossRefGoogle Scholar
  83. 83.
    Clark LC Jr, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102(1):29–45PubMedCrossRefGoogle Scholar
  84. 84.
    Cheng Y, Liu Y, Huang J, Xian Y, Zhang W, Zhang Z, Jin L (2008) Rapid amperometric detection of coliforms based on MWNTs/Nafion composite film modified glass carbon electrode. Talanta 75(1):167PubMedGoogle Scholar
  85. 85.
    Cheng Y, Liu Y, Huang J, Li K, Xian Y, Zhang W, Jin L (2009) Amperometric tyrosinase biosensor based on FeO nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms. Electrochim Acta 54(9):2588–2594CrossRefGoogle Scholar
  86. 86.
    Zhang W, Tang H, Geng P, Wang Q, Jin L, Wu Z (2007) Amperometric method for rapid detection of Escherichia coli, by flow injection analysis using a bismuth nano-film modified glassy carbon electrode. Electrochem Commun 9(4):833–838CrossRefGoogle Scholar
  87. 87.
    Vásquez G, Rey A, Rivera C, Iregui C, Orozco J (2017) Amperometric biosensor based on a single antibody of dual function for rapid detection of Streptococcus agalactiae. Biosens Bioelectron 87:453–458PubMedCrossRefGoogle Scholar
  88. 88.
    Kaushal A, Singh S, Kumar A, Kumar D (2017) Nano-Au/cMWCNT modified speB gene specific amperometric sensor for rapidly detecting Streptococcus pyogenes causing rheumatic heart disease. Indian J Microbiol 57(1):121–124PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Bhardwaj H, Solanki S, Sumana G (2016) Electrophoretically deposited multiwalled carbon nanotube based amperometric genosensor for E. coli detection. J Phys Conf Ser 704(1):012007CrossRefGoogle Scholar
  90. 90.
    Singh S, Kaushal A, Khare S, Kumar A (2017) DNA chip-based sensor for amperometric detection of infectious pathogens. Int J Biol Macromol 103:355–359PubMedCrossRefGoogle Scholar
  91. 91.
    Campuzano S, de Ávila BE, Yuste J, Pedrero M, García JL, García P, García E, Pingarrón JM (2010) Disposable amperometric magnetoimmunosensors for the specific detection of Streptococcus pneumoniae. Biosens Bioelectron 26(4):1225–1230PubMedCrossRefGoogle Scholar
  92. 92.
    Wang F (2007) Application and advance of electrochemical impedance spectroscopy in the research of biosensors. Lett BiotechnolGoogle Scholar
  93. 93.
    Wang R, Lum J, Callaway Z, Lin J, Bottje W, Li Y (2015) A label-free impedance immunosensor using screen-printed interdigitated electrodes and magnetic nanobeads for the detection of E. coli O157:H7. Biosensors 5(4):791–803PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Lu L, Chee G, Yamada K, Jun S (2013) Electrochemical impedance spectroscopic technique with a functionalized microwire sensor for rapid detection of foodborne pathogens. Biosens Bioelectron 42(1):492–495PubMedCrossRefGoogle Scholar
  95. 95.
    Vaisocherová H, Zhang Z, Yang W, Cao Z, Cheng G, Taylor AD, Piliarik M, Homola J, Jiang S (2009) Functionalizable surface platform with reduced nonspecific protein adsorption from full blood plasma—material selection and protein immobilization optimization. Biosens Bioelectron 24(7):1924–1930PubMedCrossRefGoogle Scholar
  96. 96.
    Farka Z, Juřík T, Pastucha M, Kovář D, Lacina K, Skládal P (2016) Rapid immunosensing of Salmonella Typhimurium using electrochemical impedance spectroscopy: the effect of sample treatment. Electroanalysis 28(8):1803–1809CrossRefGoogle Scholar
  97. 97.
    Dastider SG, Barizuddin S, Wu Y, Dweik M, Almasri M (2013) Impedance biosensor based on interdigitated electrode arrays for detection of low levels of E. coli O157:H7. In: 2013 I.E. 26th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, Taipei, pp 955–958Google Scholar
  98. 98.
    Varshney M, Li YB, Srinivasan B, Tung S (2007) A label-free, microfluidics and interdigitated array microelectrode based impedance biosensor in combination with nanoparticles immunoseparation for detection of Escherichia coli O157:H7 in food samples. Sensors Actuators B Chem 128(1):99–107CrossRefGoogle Scholar
  99. 99.
    Lei Y, Chen W, Mulchandani A (2006) Microbial biosensors. Anal Chim Acta 568(1–2):200–210PubMedCrossRefGoogle Scholar
  100. 100.
    Ayenimo JG, Adeloju SB (2015) Inhibitive potentiometric detection of trace metals with ultrathin polypyrrole glucose oxidase biosensor. Talanta 137:62PubMedCrossRefGoogle Scholar
  101. 101.
    Zhang Q, Ding J, Kou L, Wei Q (2013) A potentiometric flow biosensor based on ammonia-oxidizing bacteria for the detection of toxicity in water. Sensors 13(6):6936–6945PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Stepurska KV, Soldatkin OO, Arkhypova VM, Soldatkin AP, Lagarde F, Jaffrezic-Renault N et al (2015) Development of novel enzyme potentiometric biosensor based on pH-sensitive field-effect transistors for aflatoxin b1 analysis in real samples. Talanta 144:1079–1084PubMedCrossRefGoogle Scholar
  103. 103.
    Yang Z, Zhang C, Zhang J, Bai W (2013) Potentiometric glucose biosensor based on core–shell Fe3O4–enzyme–polypyrrole nanoparticles. Biosens Bioelectron 51C(2):268Google Scholar
  104. 104.
    Mehala N, Rajendran L (2014) Analysis of mathematical modelling on potentiometric biosensors. Isrn Biochem 2014(1):582675PubMedPubMedCentralGoogle Scholar
  105. 105.
    Ambrosi A, Bonanni A, Sofer Z, Cross JS, Pumera M (2011) Electrochemistry at chemically modified graphenes. Chemistry 17(38):10763PubMedCrossRefGoogle Scholar
  106. 106.
    Zelada-Guillén GA, Riu J, Düzgün A, Rius FX (2009) Immediate detection of living bacteria at ultralow concentrations using a carbon nanotube based potentiometric aptasensor. Angew Chem 48(40):7334CrossRefGoogle Scholar
  107. 107.
    Zeladaguillén GA, Bhosale SV, Riu J, Rius FX (2010) Real-time potentiometric detection of bacteria in complex samples. Anal Chem 82(22):9254–9260CrossRefGoogle Scholar
  108. 108.
    Hernández R, Vallés C, Benito AM, Maser WK, Rius FX, Riu J (2014) Graphene-based potentiometric biosensor for the immediate detection of living bacteria. Biosens Bioelectron 54(8):553–557PubMedCrossRefGoogle Scholar
  109. 109.
    Nicole JR, Dzyadevych SV (2008) Conductometric microbiosensors for environmental monitoring. Sensors 8(4):2569–2588CrossRefGoogle Scholar
  110. 110.
    Gaspera ED, Buso D, Guglielmi M, Martucci A, Bello V, Mattei G, Martucci A, Bello V, Mattei G, Post ML, Cantalini C, Agnoli S, Granozzi G, Sadek AZ, Kalantar-zadeh K, Wlodarski W (2010) Comparison study of conductometric, optical and saw gas sensors based on porous sol–gel silica films doped with NiO and Au nanocrystals. Sensors Actuators B Chem 143(2):567–573CrossRefGoogle Scholar
  111. 111.
    Ponzoni A, Zappa D, Comini E, Sberveglieri V, Faglia G, Sberveglieri G (2012) Metal oxide nanowire gas sensors: application of conductometric and surface ionization architectures. Chem Eng Trans 30:31–36Google Scholar
  112. 112.
    Korotcenkov G, Han SH, Cho BK (2016) Metal oxide nanocomposites: advantages and shortcomings for application in conductometric gas sensors. In: Materials Science Forum. Trans Tech Publications, vol 872, pp 223–229.  https://doi.org/10.4028/www.scientific.net/MSF.872.223
  113. 113.
    Korotcenkov G, Brinzari V, Cho BK (2016) Conductometric gas sensors based on metal oxides modified with gold nanoparticles: a review. Microchim Acta 183(3):1033–1054CrossRefGoogle Scholar
  114. 114.
    Valera E, Ramón-Azcón J, Sanchez FJ, Marco MP, Rodríguez Á (2008) Conductimetric immunosensor for atrazine detection based on antibodies labelled with gold nanoparticles. Sensors Actuators B Chem 134(1):95–103CrossRefGoogle Scholar
  115. 115.
    Valera E, Ramónazcón J, Barranco A, Alfaro B, Sánchezbaeza F, Marco MP, Rodríguez A (2010) Determination of atrazine residues in red wine samples. A conductimetric solution. Food Chem 122(3):888–894CrossRefGoogle Scholar
  116. 116.
    Valera E, Muñiz D, Rodríguez Á (2010) Fabrication of flexible interdigitated μ-electrodes (FIDμ;Es) for the development of a conductimetric immunosensor for atrazine detection based on antibodies labelled with gold nanoparticles. Microelectron Eng 87(2):167–173CrossRefGoogle Scholar
  117. 117.
    Saiapina OY, Pyeshkova VM, Soldatkin OO, Melnik VG, Kurç BA, Walcarius A, Dzyadevych SV, Jaffrezic-Renault N (2011) Conductometric enzyme biosensors based on natural zeolite clinoptilolite for urea determination. Mater Sci Eng C 31(7):1490–1497CrossRefGoogle Scholar
  118. 118.
    Okafor C, Grooms D, Alocilja E, Bolin S (2008) Fabrication of a novel conductometric biosensor for detecting Mycobacterium avium subsp. paratuberculosis antibodies. Sensors 8(9):6015–6025PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Okafor C, Grooms D, Alocilja E, Bolin S (2014) Comparison between a conductometric biosensor and ELISA in the evaluation of Johne’s disease. Sensors 14(10):19128–19137PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Ichi SE, Leon F, Vossier L, Marchandin H, Errachid A, Coste J, Jaffrezic-Renault N, Fournier-Wirth C (2014) Microconductometric immunosensor for label-free and sensitive detection of Gram-negative bacteria. Biosens Bioelectron 54(54C):378–384PubMedCrossRefGoogle Scholar
  121. 121.
    Saad NA, Zaaba SK, Zakaria A, Kamarudin LM, Wan K, Shariman AB (2015) Quartz crystal microbalance for bacteria application review. International Conference on Electronic Design. IEEE, pp 455–460Google Scholar
  122. 122.
    Ogi H (2013) Wireless-electrodeless quartz-crystal-microbalance biosensors for studying interactions among biomolecules: a review. Proc Jpn Acad 89(9):401–417CrossRefGoogle Scholar
  123. 123.
    Sauerbrey GZ (1959) Use of quartz crystal vibrator for weighting thin films on a microbalanceGoogle Scholar
  124. 124.
    Poitras C, Tufenkji N (2009) A QCM-D-based biosensor for E. coli O157:H7 highlighting the relevance of the dissipation slope as a transduction signal. Biosens Bioelectron 24(7):2137PubMedCrossRefGoogle Scholar
  125. 125.
    Guo X, Lin CS, Chen SH, Ye R, Wu VCH (2012) A piezoelectric immunosensor for specific capture and enrichment of viable pathogens by quartz crystal microbalance sensor, followed by detection with antibody-functionalized gold nanoparticles. Biosens Bioelectron 38(1):177PubMedCrossRefGoogle Scholar
  126. 126.
    Ozalp VC, Bayramoglu G, Erdem Z, Arica MY (2015) Pathogen detection in complex samples by quartz crystal microbalance sensor coupled to aptamer functionalized core–shell type magnetic separation. Anal Chim Acta 853(1):533–540PubMedCrossRefGoogle Scholar
  127. 127.
    Turner RD, Hobbs JK, Foster SJ (2016) Atomic force microscopy analysis of bacterial cell wall peptidoglycan architecture. Methods Mol Biol 1440:3–9PubMedCrossRefGoogle Scholar
  128. 128.
    Artelsmair H, Kienberger F, Tinazli A, Schlapak R, Zhu R, Preiner J, Wruss J, Kastner M, Saucedo-Zeni N, Hoelzl M, Rankl C, Baumgartner W, Howorka S, Blaas D, Gruber HJ, Tampé R, Hinterdorfer P (2008) Atomic force microscopy-derived nanoscale chip for the detection of human pathogenic viruses. Small 4(6):847–854PubMedCrossRefGoogle Scholar
  129. 129.
    Deryabin DG, Vasilchenko AS, Aleshina ES, Tlyagulova AS, Nikiyan HN (2010) An investigation into the interaction between carbon-based nanomaterials and Escherichia coli, cells using atomic force microscopy. Nanotechnol Russia 5(11–12):857–863CrossRefGoogle Scholar
  130. 130.
    Turner RD, Hurd AF, Cadby A, Hobbs JK, Foster SJ (2013) Cell wall elongation mode in Gram-negative bacteria is determined by peptidoglycan architecture. Nat Commun 4(2):1496PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Hayhurst EJ, Kailas L, Hobbs JK, Foster SJ (2008) Cell wall peptidoglycan architecture in Bacillus subtilis. Proc Natl Acad Sci 105(38):14603–14608PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Turner RD, Ratcliffe EC, Wheeler R, Golestanian R, Hobbs JK, Foster SJ (2010) Peptidoglycan architecture can specify division planes in Staphylococcus aureus. Nat Commun 1(1):26PubMedGoogle Scholar
  133. 133.
    Nemova IS, Falova OE, Potaturkina-Nesterova NI (2016) The use of atomic force microscopy for cytomorphological analysis of bacterial infection agents. Bull Exp Biol Med 160(4):1–3CrossRefGoogle Scholar
  134. 134.
    Wheeler R, Mesnage S, Boneca IG, Hobbs JK, Foster SJ (2011) Super-resolution microscopy reveals cell wall dynamics and peptidoglycan architecture in ovococcal bacteria. Mol Microbiol 82(5):1096–1109PubMedCrossRefGoogle Scholar
  135. 135.
    Ivanov YD, Kaysheva AL, Frantsuzov PA, Pleshakova TO, Krohin NV, Izotov AA, Shumov ID, Uchaikin VF, Konev VA, Ziborov VS, Archakov AI (2015) Detection of hepatitis C virus core protein in serum by atomic force microscopy combined with mass spectrometry. Int J Nanomedicine 10:1597PubMedPubMedCentralGoogle Scholar
  136. 136.
    Bocklitz T, Kämmer E, Stöckel S, Cialla-May D, Weber K, Zell R, Deckert V, Popp J (2014) Single virus detection by means of atomic force microscopy in combination with advanced image analysis. J Struct Biol 188(1):30–38PubMedCrossRefGoogle Scholar
  137. 137.
    Dubrovin E, Drygin YF, Novikov VK, Yaminsky LV (2007) Atomic force microscopy as a tool of inspection of viral infection. Nanomedicine 3(2):128–131PubMedCrossRefGoogle Scholar
  138. 138.
    Lee KM, Runyon M, Herrman TJ, Phillips R, Hsieh J (2015) Review of Salmonella, detection and identification methods: aspects of rapid emergency response and food safety. Food Control 47:264–276CrossRefGoogle Scholar
  139. 139.
    Melo AMA, Alexandre DL, Furtado RF, Borges MF, Figueiredo EAT, Biswas A, Cheng HN, Alves CR (2016) Electrochemical immunosensors for Salmonella detection in food. Appl Microbiol Biotechnol 100(12):5301–5312PubMedCrossRefGoogle Scholar
  140. 140.
    Sauer S, Freiwald A, Maier T, Kube M, Reinhardt R, Kostrzewa M, Geider K (2008) Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One 3(7):e2843PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Freiwald A, Sauer S (2009) Phylogenetic classification and identification of bacteria by mass spectrometry. Nat Protoc 4(5):732–742PubMedCrossRefGoogle Scholar
  142. 142.
    Kedney MG, Strunk KB, Giaquinto LM, Wagner JA, Pollack S, Patton WA (2007) Identification of bacteria using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect 35(6):425Google Scholar
  143. 143.
    Deshmukh RA, Joshi K, Bhand S, Roy U (2016) Recent developments in detection and enumeration of waterborne bacteria: a retrospective minireview. Microbiology 5(6):901–922Google Scholar
  144. 144.
    Yuan JH (2010) Experimental research on real-time fluorescent quantitative PCR. Modern Agricultural Sciences and Technology (13):20–22Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Medical TechnologyXuzhou Medical UniversityXuzhouChina
  2. 2.Department of Cell Biology and Genetics, School of Basic Medical SciencesXian Jiaotong University Health Science CenterXianChina
  3. 3.Nanjing Jusha Display Technology Co., LtdNanjingChina
  4. 4.Department of Laboratory MedicineAffiliated Hospital of Xuzhou Medical UniversityXuzhouChina

Personalised recommendations