Calcolo

, 55:21 | Cite as

A mixed virtual element method for a nonlinear Brinkman model of porous media flow

  • Gabriel N. Gatica
  • Mauricio Munar
  • Filánder A. Sequeira
Article
  • 29 Downloads

Abstract

In this work we introduce and analyze a mixed virtual element method for the two-dimensional nonlinear Brinkman model of porous media flow with non-homogeneous Dirichlet boundary conditions. For the continuous formulation we consider a dual-mixed approach in which the main unknowns are given by the gradient of the velocity and the pseudostress, whereas the velocity itself and the pressure are computed via simple postprocessing formulae. In addition, because of analysis reasons we add a redundant term arising from the constitutive equation relating the pseudostress and the velocity, so that the well-posedness of the resulting augmented formulation is established by using known results from nonlinear functional analysis. Then, we introduce the main features of the mixed virtual element method, which employs an explicit piecewise polynomial subspace and a virtual element subspace for approximating the aforementioned main unknowns, respectively. In turn, the associated computable discrete nonlinear operator is defined in terms of the \(\mathbb {L}^2\)-orthogonal projector onto a suitable space of polynomials, which allows the explicit integration of the terms involving deviatoric tensors that appear in the original setting. Next, we show the well-posedness of the discrete scheme and derive the associated a priori error estimates for the virtual element solution as well as for the fully computable projection of it. Furthermore, we also introduce a second element-by-element postprocessing formula for the pseudostress, which yields an optimally convergent approximation of this unknown with respect to the broken \(\mathbb {H}(\mathbf {div})\)-norm. Finally, several numerical results illustrating the good performance of the method and confirming the theoretical rates of convergence are presented.

Keywords

Nonlinear Brinkman model Augmented formulation Virtual element method A priori error analysis Postprocessing techniques High-order approximations 

Mathematics Subject Classification

65N30 65N12 65N15 

References

  1. 1.
    Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L.D., Russo, A.: Equivalent projectors for virtual element methods. Comput. Math. Appl. 66, 376–391 (2013)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Antonietti, P.F., Beirão da Veiga, L., Mora, D., Verani, M.: A stream virtual element formulation of the Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 52, 386–404 (2017)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L.D., Russo, A.: Basic principles of virtual element methods. Math. Models Methods Appl. Sci. 23, 199–214 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: \({H}(\div )\) and \({H}({\rm curl})\)-conforming virtual element method. Numer. Math. 133, 303–332 (2016)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Beirão da Veiga, L., Brezzi, F., Marini, L.D., Russo, A.: Mixed virtual element methods for general second order elliptic problems on polygonal meshes. ESAIM Math. Model. Numer. Anal. 50, 727–747 (2016)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Beirão da Veiga, L., Lovadina, C., Vacca, G.: Divergence free virtual elements for the Stokes problem on polygonal meshes. ESAIM Math. Model. Numer. Anal. 51, 509–535 (2017)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Beirão da Veiga, L., Lovadina, C., Vacca, G.: Virtual elements for the Navier-Stokes problem on polygonal meshes. SIAM J. Numer. Anal. 56, 1210–1242 (2018)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Beirão da Veiga, L., Mora, D., Rivera, G., Rodríguez, R.: A virtual element method for the acoustic vibration problem. Numer. Math. 136, 725–763 (2017)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)CrossRefMATHGoogle Scholar
  10. 10.
    Brezzi, F., Falk, R.S., Marini, L.D.: Basic principles of mixed virtual element methods. ESAIM Math. Model. Numer. Anal. 48, 1227–1240 (2014)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Cáceres, E., Gatica, G.N.: A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem. IMA J. Numer. Anal. 37, 296–331 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Cáceres, E., Gatica, G.N., Sequeira, F.A.: A mixed virtual element method for the Brinkman problem. Math. Models Methods Appl. Sci. 27, 707–743 (2017)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Cáceres, E., Gatica, G.N., Sequeira, F.A.: A mixed virtual element method for quasi-Newtonian Stokes flows. SIAM J. Numer. Anal. 56, 317–343 (2018)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Camaño, J., Gatica, G.N., Oyarzúa, R., Tierra, G.: An augmented mixed finite element method for the Navier–Stokes equations with variable viscosity. SIAM J. Numer. Anal. 54, 1069–1092 (2016)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Camaño, J., Gatica, G.N., Oyarzúa, R., Ruiz-Baier, R.: An augmented stress-based mixed finite element method for the steady state Navier–Stokes equations with nonlinear viscosity. Numer. Methods Partial Differ. Equ. 33, 1692–1725 (2017)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Camaño, J., Oyarzúa, R., Tierra, G.: Analysis of an augmented mixed-FEM for the Navier–Stokes problem. Math. Comp. 86, 589–615 (2017)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Cangiani, A., Gyrya, V., Manzini, G.: The nonconforming virtual element method for the Stokes equations. SIAM J. Numer. Anal. 54, 3411–3435 (2016)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Gatica, G.N., Sequeira, F.A.: Analysis of an augmented HDG method for a class of quasi-Newtonian Stokes flows. J. Sci. Comput. 65, 1270–1308 (2015)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Gatica, G.N., Sequeira, F.A.: A priori and a posteriori error analyses of an augmented HDG method for a class of quasi-Newtonian Stokes flows. J. Sci. Comput. 69, 1192–1250 (2016)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Gatica, G.N., González, M., Meddahi, S.: A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part I: a priori error analysis. Comput. Methods Appl. Mech. Eng. 193, 881–892 (2004)CrossRefMATHGoogle Scholar
  21. 21.
    Gatica, G.N., Márquez, A., Sánchez, M.A.: A priori and a posteriori error analyses of a velocity-pseudostress formulation for a class of quasi-Newtonian Stokes flows. Comput. Methods Appl. Mech. Eng. 200, 1619–1636 (2011)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Gatica, G.N., Gatica, L.F., Márquez, A.: Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow. Numer. Math. 126, 635–677 (2014)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Gatica, G.N., Gatica, L.F., Sequeira, F.A.: Analysis of an augmented pseudostress-based mixed formulation for a nonlinear Brinkman model of porous media flow. Comput. Methods Appl. Mech. Engrg. 289, 104–130 (2015)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Gatica, G.N., Gatica, L.F., Sequeira, F.A.: A \(\mathbb{R}\mathbb{T}_k-\mathbf{P}_k\) approximation for linear elasticity yielding a broken \(\mathbb{H}(\mathbf{div})\) convergent postprocessed stress. Appl. Math. Lett. 49, 133–140 (2015)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Gatica, G.N., Gatica, L.F., Sequeira, F.A.: A priori and a posteriori error analyses of a pseudostress-based mixed formulation for linear elasticity. Comput. Math. Appl. 71, 585–614 (2016)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Gatica, G.N., Munar, M., Sequeira, F.A. (2017) A mixed virtual element method for the Navier–Stokes equations. Preprint 2017-23, Centro de Investigación en Ingeniería Matemática, Universidad de Concepción. http://www.ci2ma.udec.cl/publicaciones/prepublicaciones/
  27. 27.
    Howell, J.S.: Dual-mixed finite element approximation of Stokes and nonlinear Stokes problems using trace-free velocity gradients. J. Comput. Appl. Math. 231, 780–792 (2009)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Loula, A.F.D., Guerreiro, J.N.C.: Finite element analysis of nonlinear creeping flows. Comput. Methods Appl. Mech. Eng. 79, 87–109 (1990)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Sandri, D.: Sur l’approximation numérique des écoulements quasi-newtoniens dont la viscosité suit la loi puissance ou la loi de Carreau. RAIRO Modél. Math. Anal. Numér. Anal. 27, 131–155 (1993)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Vacca, G.: An \({H}^1\)-conforming virtual element for Darcy and Brinkman equations. Math. Models Methods Appl. Sci 28, 159–194 (2018)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Zeidler, E.: Nonlinear Functional Analysis and its Applications II/B: Nonlinear Monotone Operators. Springer, New York (1990)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  • Gabriel N. Gatica
    • 1
  • Mauricio Munar
    • 1
  • Filánder A. Sequeira
    • 2
  1. 1.CI²MA and Departamento de Ingeniería MatemáticaUniversidad de ConcepciónConcepciónChile
  2. 2.Escuela de MatemáticaUniversidad NacionalHerediaCosta Rica

Personalised recommendations