Advertisement

Calcolo

, 55:18 | Cite as

A stable space–time finite element method for parabolic evolution problems

  • Stephen Edward Moore
Article
  • 100 Downloads

Abstract

This paper is concerned with the analysis of a new stable space–time finite element method (FEM) for the numerical solution of parabolic evolution problems in moving spatial computational domains. The discrete bilinear form is elliptic on the FEM space with respect to a discrete energy norm. This property together with a corresponding boundedness property, consistency and approximation results for the FEM spaces yield an a priori discretization error estimate with respect to the discrete norm. Finally, we confirm the theoretical results with numerical experiments in spatial moving domains.

Keywords

Finite element method space–time Parabolic evolution problem Moving spatial computational domains A priori discretization error estimates 

Mathematics Subject Classification

65M12 65M60 

Notes

Acknowledgements

The author appreciates the constructive comments from the reviewer which helped improve the article.

References

  1. 1.
    Babuška, I., Janik, T.: The \(h\)-\(p\) version of the finite element method for parabolic equations. I. The \(p\)-version in time. Numer. Methods Partial Differ. Equ. 5(4), 363–399 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Babuška, I., Janik, T.: The \(h\)-\(p\) version of the finite element method for parabolic equations. II. The \(h\)-\(p\) version in time. Numer. Methods Partial Differ. Equ. 6(4), 343–369 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bank, R.E., Vassilevski, P.S., Zikatanov, L.T.: Arbitrary dimension convectiondiffusion schemes for spacetime discretizations. J. Comput. Appl. Math. 310, 19–31 (2017). Numerical Algorithms for Scientific and Engineering ApplicationsMathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brenner, S.C., Scott, R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. Springer, Berlin (2008)CrossRefGoogle Scholar
  5. 5.
    Hecht, F.: New development in freefem++. J. Numer. Math. 20(3–4), 251–265 (2012)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Hughes, T.J.R., Hulbert, G.M.: Space–time finite element methods for elastodynamics: formulations and error estimates. Comput. Methods Appl. Mech. Eng. 66(3), 339–363 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Johnson, C.: Numerical Solution of Partial Differential Equations by the Finite Element Method. Dover Publications, Inc., Mineola (2009). Reprint of the 1987 editionzbMATHGoogle Scholar
  8. 8.
    Ladyzhenskaya, O.A., Solonnikov, V.A., Uraltseva, N.N.: Linear and quasilinear equations of parabolic type. Nauka, Moscow, 1967. In: Russian. Translated in AMS, Providence, RI (1968)Google Scholar
  9. 9.
    Langer, U., Matculevich, S., Repin, S.: A posteriori error estimates for space–time iga approximations to parabolic initial boundary value problems. arxiv, (2017-14). arXiv:1612.08998
  10. 10.
    Langer, U., Moore, S.E., Neumüller, M.: Space-time isogeometric analysis of parabolic evolution equations. Comput. Methods Appl. Mech. Eng. 306, 342–363 (2016)CrossRefGoogle Scholar
  11. 11.
    Moore, S.E.: Nonstandard Discretization Strategies in Isogeometric Analysis for Partial Differential Equations. PhD thesis, Johannes Kepler University (2017)Google Scholar
  12. 12.
    Moore, S.E.: Space–time multipatch discontinuous galerkin isogeometric analysis for parabolic evolution problem. arxiv (2017)Google Scholar
  13. 13.
    Neumüller, M.: Space–time methods: fast solvers and applications, volume 20 of monographic series TU Graz: Computation in Engineering and Science. TU Graz (2013)Google Scholar
  14. 14.
    Schötzau, D., Schwab, C.: An hp a priori error analysis of the dg time-stepping method for initial value problems. Calcolo 37(4), 207–232 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Schwab, C., Stevenson, R.: Space–time adaptive wavelet methods for parabolic evolution problems. Math. Comput. 78, 1293–1318 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Steinbach, O.: Space–time finite element methods for parabolic problems. Comput. Meth. Appl. Math. 15(4), 551–566 (2015)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Tezduyar, T.E., Behr, M., Mittal, S., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: the concept and the preliminary numerical tests. Comput. Methods Appl. Mech. Eng. 94(3), 339–351 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Tezduyar, T.E., Behr, M., Mittal, S., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput. Methods Appl. Mech. Eng. 94(3), 353–371 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems (Springer Series in Computational Mathematics). Springer, New York, Secaucus (2006)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Katholische Hochschulgemeinde der Diözese LinzLinzAustria

Personalised recommendations