Systematic review of novel technology-based interventions for ischemic stroke

Abstract

Purpose

To identify novel technologies pertinent to the prevention, diagnosis, treatment, and rehabilitation of ischemic stroke, and recommend the technologies that show the most promise in advancing ischemic stroke care.

Method

A systematic literature search on PubMed and Medscape was performed. Articles were assessed based on pre-determined criteria. Included journal articles were evaluated for specific characteristics and reviewed according to a structured paradigm. A search on www.clinicaltrials.gov was performed to identify pre-clinical ischemic stroke technological interventions. All clinical trial results were included. An additional search on PubMed was conducted to identify studies on robotic neuroendovascular procedures.

Results

Thirty journal articles and five clinical trials were analyzed. Articles were categorized as follows: six studies pertinent to pre-morbidity and prevention of ischemic stroke, three studies relevant to the diagnosis of ischemic stroke, 16 studies about post-ischemic stroke rehabilitation, and five studies on robotic neuroendovascular interventions.

Conclusions

Novel technologies across the spectrum of ischemic stroke care were identified, and the ones that appear to have the most clinical utility are recommended. Future investigation of the feasibility and long-term efficacy of the recommended technologies in clinical settings is warranted.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

Not applicable.

References

  1. 1.

    Benjamin EJ et al (2017) Heart disease and stroke statistics-2017 update: a report from the American Heart Association. Circulation 135(10):e146–e603

    PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Chang P, Prabhakaran S (2017) Recent advances in the management of acute ischemic stroke. F1000Res 6

  3. 3.

    D'Anna L (2020) Endovascular treatment of ischemic large-vessel stroke due to infective endocarditis: case series and review of the literature. Neurol Sci 41(12):3517–3525

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Furlan AJ et al (2006) Dose escalation of desmoteplase for acute ischemic stroke (DEDAS): evidence of safety and efficacy 3 to 9 hours after stroke onset. Stroke 37(5):1227–1231

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5.

    Hacke W et al (2005) The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 36(1):66–73

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Albers GW et al (2006) Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 60(5):508–517

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Fasoli SE, Krebs HI, Hogan N (2004) Robotic technology and stroke rehabilitation: translating research into practice. Top Stroke Rehabil 11(4):11–19

    PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Wu J et al (2021) The modulatory effects of bilateral arm training (BAT) on the brain in stroke patients: a systematic review. Neurol Sci 42(2):501–511

    PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Moher D et al (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4(1):1

    PubMed  PubMed Central  Article  Google Scholar 

  10. 10.

    Liberati A et al (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Grunwald IQ et al (2016) First automated stroke imaging evaluation via electronic Alberta stroke program early CT score in a mobile stroke unit. Cerebrovasc Dis 42(5-6):332–338

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Ranta A et al (2017) Impact and implementation of a sustainable regional telestroke network. Intern Med J 47(11):1270–1275

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Wang Y, Bajorek B (2018) Selecting antithrombotic therapy for stroke prevention in atrial fibrillation: health professionals’ feedback on a decision support tool. Health Informatics J 24(3):309–322

    PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Bajorek BV et al (2016) Optimizing stroke prevention in patients with atrial fibrillation: a cluster-randomized controlled trial of a computerized antithrombotic risk assessment tool in Australian general practice, 2012-2013. Prev Chronic Dis 13:E90–E90

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Wang Y, Bajorek B (2016) Clinical pre-test of a computerised antithrombotic risk assessment tool for stroke prevention in atrial fibrillation patients: giving consideration to NOACs. J Eval Clin Pract 22(6):892–898

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Ran X, Zhang Q, Wang DW (2015) Tissue kallikrein activity, detected by a novel method, may be a predictor of recurrent stroke: a case-control study. Dis Markers 2015:159750–159750

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17.

    Subudhi A, Jena S, Sabut S (2018) Delineation of the ischemic stroke lesion based on watershed and relative fuzzy connectedness in brain MRI. Med Biol Eng Comput 56(5):795–807

    PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Kesav P et al (2019) Utility of intracranial high-resolution vessel wall magnetic resonance imaging in differentiating intracranial vasculopathic diseases causing ischemic stroke. Neuroradiology 61(4):389–396

    PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Owolabi M et al (2017) Development and reliability of a user-friendly multicenter phenotyping application for hemorrhagic and ischemic stroke. J Stroke Cerebrovasc Dis 26(11):2662–2670

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Sarasola-Sanz A et al (2018) Design and effectiveness evaluation of mirror myoelectric interfaces: a novel method to restore movement in hemiplegic patients. Sci Rep 8(1):16688

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Washabaugh EP et al (2018) Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study. Restor Neurol Neurosci 36(6):693–708

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Germanotta M et al (2018) Reliability, validity and discriminant ability of the instrumental indices provided by a novel planar robotic device for upper limb rehabilitation. J Neuroeng Rehabil 15(1):39

    PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Cannell J et al (2018) The efficacy of interactive, motion capture-based rehabilitation on functional outcomes in an inpatient stroke population: a randomized controlled trial. Clin Rehabil 32(2):191–200

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Picelli A et al (2018) Combined effects of cerebellar transcranial direct current stimulation and transcutaneous spinal direct current stimulation on robot-assisted gait training in patients with chronic brain stroke: a pilot, single blind, randomized controlled trial. Restor Neurol Neurosci 36(2):161–171

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Park JH et al (2018) Comparative effects of robotic-assisted gait training combined with conventional physical therapy on paretic hip joint stiffness and kinematics between subacute and chronic hemiparetic stroke. NeuroRehabilitation 42(2):181–190

    PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Gobbo M et al (2017) Hand passive mobilization performed with robotic assistance: acute effects on upper limb perfusion and spasticity in stroke survivors. Biomed Res Int 2017:2796815–2796815

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Kesav P et al (2017) Effectiveness of speech language therapy either alone or with add-on computer-based language therapy software (Malayalam version) for early post stroke aphasia: a feasibility study. J Neurol Sci 380:137–141

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Park W et al (2015) Assessment of cognitive engagement in stroke patients from single-trial EEG during motor rehabilitation. IEEE Trans Neural Syst Rehabil Eng 23(3):351–362

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Duret C et al (2015) Use of a robotic device for the rehabilitation of severe upper limb paresis in subacute stroke: exploration of patient/robot interactions and the motor recovery process. Biomed Res Int 2015:482389

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Afzal MR et al (2015) Effects of kinesthetic haptic feedback on standing stability of young healthy subjects and stroke patients. J Neuroeng Rehabil 12:27

    PubMed  PubMed Central  Article  Google Scholar 

  31. 31.

    Calabro RS et al (2015) Do post-stroke patients benefit from robotic verticalization? A pilot-study focusing on a novel neurophysiological approach. Restor Neurol Neurosci 33(5):671–681

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Yu L et al (2016) A remote quantitative Fugl-Meyer assessment framework for stroke patients based on wearable sensor networks. Comput Methods Prog Biomed 128:100–110

    Article  Google Scholar 

  33. 33.

    Yu L et al (2016) A compressed sensing-based wearable sensor network for quantitative assessment of stroke patients. Sensors (Basel) 16(2):202

    Article  Google Scholar 

  34. 34.

    Rinne P et al (2016) Democratizing neurorehabilitation: how accessible are low-cost mobile-gaming technologies for self-rehabilitation of arm disability in stroke? PLoS One 11(10):e0163413

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Lee JJ, You JSH (2017) Effects of novel guidance tubing gait on electromyographic neuromuscular imbalance and joint angular kinematics during locomotion in hemiparetic stroke patients. Arch Phys Med Rehabil 98(12):2526–2532

    PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Shuaib A et al (2011) Partial aortic occlusion for cerebral perfusion augmentation: safety and efficacy of NeuroFlo in Acute Ischemic Stroke trial. Stroke 42(6):1680–1690

    PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Prasad K et al (2014) Intravenous autologous bone marrow mononuclear stem cell therapy for ischemic stroke: a multicentric, randomized trial. Stroke 45(12):3618–3624

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Prasad K et al (2012) Autologous intravenous bone marrow mononuclear cell therapy for patients with subacute ischaemic stroke: a pilot study. Indian J Med Res 136(2):221–228

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Wang Y et al (2013) Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N Engl J Med 369(1):11–19

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40.

    Wang Y, Johnston SC (2010) Rationale and design of a randomized, double-blind trial comparing the effects of a 3-month clopidogrel-aspirin regimen versus aspirin alone for the treatment of high-risk patients with acute nondisabling cerebrovascular event. Am Heart J 160(3):380–386.e1

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Britz GW, Panesar SS, Falb P, Tomas J, Desai V, Lumsden A (2019) Neuroendovascular-specific engineering modifications to the CorPath GRX Robotic System.J Neurosurg. https://doi.org/10.3171/2019.9.JNS192113

  42. 42.

    Mendes Pereira V et al (2020) First-in-human, robotic-assisted neuroendovascular intervention. J Neurointerv Surg 12(4):338–340

    PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Murayama Y et al (2011) Robotic digital subtraction angiography systems within the hybrid operating room. Neurosurgery 68(5):1427–1432 discussion 1433

    PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Sajja KC et al (2020) Endovascular robotic: feasibility and proof of principle for diagnostic cerebral angiography and carotid artery stenting. J Neurointerv Surg 12(4):345–349

    PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Miyachi S et al (2019) Novel operation support robot with sensory-motor feedback system for neuroendovascular intervention. World Neurosurg 127:e617–e623

    PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Maier O et al (2015) Classifiers for ischemic stroke lesion segmentation: a comparison study. PLoS One 10(12):e0145118

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    Mitra J et al (2014) Lesion segmentation from multimodal MRI using random forest following ischemic stroke. NeuroImage 98:324–335

    PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Guo D et al (2015) Automated lesion detection on MRI scans using combined unsupervised and supervised methods. BMC Med Imaging 15:50

  49. 49.

    Tsai J-Z et al (2014) Automatic detection and quantification of acute cerebral infarct by fuzzy clustering and histographic characterization on diffusion weighted MR imaging and apparent diffusion coefficient map. Biomed Res Int 2014:963032

    PubMed  PubMed Central  Google Scholar 

  50. 50.

    Bhanu Prakash KN et al (2006) Identification, segmentation, and image property study of acute infarcts in diffusion-weighted images by using a probabilistic neural network and adaptive Gaussian mixture model. Acad Radiol 13(12):1474–1484

    Article  Google Scholar 

  51. 51.

    Mah Y-H et al (2014) A new method for automated high-dimensional lesion segmentation evaluated in vascular injury and applied to the human occipital lobe. Cortex 56:51–63

    PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Muda AF et al (2015) Brain lesion segmentation using fuzzy C-means on diffusion-weighted imaging. ARPN J Eng Appl Sci 10:1138–1144

    Google Scholar 

  53. 53.

    Wang Y, Katsaggelos AK, Wang X, Parrish TB (2016) A deep symmetry convnet for stroke lesion segmentation. In: 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, pp 111–115

  54. 54.

    Schellinger PD et al (2010) Evidence-based guideline: The role of diffusion and perfusion MRI for the diagnosis of acute ischemic stroke: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology 75(2):177–85

  55. 55.

    Ay H et al (2007) A computerized algorithm for etiologic classification of ischemic stroke: the Causative Classification of Stroke System. Stroke 38(11):2979–2984

    PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Takeuchi N, Izumi S-I (2012) Maladaptive plasticity for motor recovery after stroke: mechanisms and approaches. Neural Plast 2012:359728–359728

    PubMed  PubMed Central  Google Scholar 

  57. 57.

    García-Cossio E, Birbaumer N, Ramos-Murguialday A (2013) Facilitation of completely paralyzed forearm muscle activity in chronic stroke patients. In: 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER), San Diego, pp 1545–1548

  58. 58.

    Ramos-Murguialday A et al (2015) Decoding upper limb residual muscle activity in severe chronic stroke. Ann Clin Transl Neurol 2(1):1–11

    PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Wolbrecht ET et al (2008) Optimizing compliant, model-based robotic assistance to promote neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng 16(3):286–297

    PubMed  Article  PubMed Central  Google Scholar 

  60. 60.

    Zhang Z, Fang Q, Gu X (2014) Fuzzy inference system based automatic Brunnstrom stage classification for upper-extremity rehabilitation. Expert Syst Appl 41(4, Part 2):1973–1980

    Article  Google Scholar 

  61. 61.

    Zhang Z, Fang Q, Gu X (2016) Objective assessment of upper-limb mobility for poststroke rehabilitation. IEEE Trans Biomed Eng 63(4):859–868

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Zhang Z et al (2016) A fuzzy kernel motion classifier for autonomous stroke rehabilitation. IEEE J Biomed Health Inform 20(3):893–901

    PubMed  Article  PubMed Central  Google Scholar 

  63. 63.

    Yu L, Wang J-P, Fang Q, Wang Y (2012) Brunnstrom stage automatic evaluation for stroke patients using extreme learning machine. In: 2012 IEEE Biomedical Circuits and Systems Conference (BioCAS), Hsinchu, pp 380–383

  64. 64.

    Raghavan P (2007) The nature of hand motor impairment after stroke and its treatment. Curr Treat Options Cardiovasc Med 9(3):221–228

    PubMed  Article  PubMed Central  Google Scholar 

  65. 65.

    Kleim JA, Jones TA (2008) Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J Speech Lang Hear Res 51(1):S225–S239

    PubMed  Article  PubMed Central  Google Scholar 

  66. 66.

    Wang Y et al (2016) Association between CYP2C19 loss-of-function allele status and efficacy of clopidogrel for risk reduction among patients with minor stroke or transient ischemic attack. Jama 316(1):70–78

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67.

    Akpinar S, Yilmaz G (2016) Periprocedural complications in endovascular stroke treatment. Br J Radiol 89:20150267

    PubMed  Article  PubMed Central  Google Scholar 

Download references

Funding

Not applicable.

Author information

Affiliations

Authors

Contributions

Steven Mulackal Thomas and Edward Sander Connolly contributed to the study conception. Literature search and data analysis were performed by Steven Mulackal Thomas and Ellie Delanni. Steven Mulackal Thomas and Ellie Delanni drafted the review article and Brandon Christophe and Edward Sander Connolly critically revised the review article.

Corresponding author

Correspondence to Steven Mulackal Thomas.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thomas, S.M., Delanni, E., Christophe, B. et al. Systematic review of novel technology-based interventions for ischemic stroke. Neurol Sci (2021). https://doi.org/10.1007/s10072-021-05126-0

Download citation

Keywords

  • Ischemic stroke
  • Novel intervention
  • Technology
  • Devices