Immediate effect of neurofeedback training on the pain matrix and cortical areas involved in processing neuropsychological functions

Abstract

Objective

This study investigated the impact of neurofeedback training on the deeper cortical structures that comprise the “pain matrix” and are involved in processing neuropsychological functions.

Methods

Five paraplegic patients with central neuropathic pain received up to 40 sessions of neurofeedback training. They were asked to simultaneously modulate the relative power of the theta, alpha and beta bands, provided as a feedback from the sensorimotor cortex. The source localization technique was applied on EEG data recorded with 16 electrodes placed over the whole head.

Results

Neurofeedback training from the sensorimotor cortex induced effects on the pain matrix and in the areas involved in processing neuropsychological functions such as memory, executive functions and emotional regulations. Alpha and beta band activity was most increased in insular, cingulate and frontal cortex regions, and other areas corresponding to executive and emotional function processing. Theta band decreases were noted in the frontal, cingulate and motor cortices. In group analysis, theta and beta band activity was significantly reduced.

Conclusion

The single channel electroencephalogram-based neurofeedback training produced effects on similar areas that are targeted in 19 channels standardized low-resolution brain electromagnetic tomography and expensive time-delayed functional magnetic resonance imaging feedback studies.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Siddall PJ, Mcclelland JM, Rutkowski SB, Cousins MJ (2003) A longitudinal study of the prevalence and characteristics of pain in the first 5 years following spinal cord injury. Pain. 103:249–257

    PubMed  Article  Google Scholar 

  2. 2.

    Jensen TS, Baron R, Haanpää M, Kalso E, Loeser JD, Rice ASC, Treede RD (2011 Oct) A new definition of neuropathic pain. Pain. 152(10):2204–2205

    PubMed  Article  Google Scholar 

  3. 3.

    Craig AB (2003 Jun) A new view of pain as a homeostatic emotion. Trends Neurosci 26(6):303–307

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Finnerup NB, Baastrup C, Jensen TS (2009) Neuropathic pain following spinal cord injury pain: mechanisms and treatment. Scand J Pain 1:3–11

    Article  Google Scholar 

  5. 5.

    Hains BC, Saab CY, Waxman SG (2005 Oct) Changes in electrophysiological properties and sodium channel Nav1.3 expression in thalamic neurons after spinal cord injury. Brain. 128:2359–2571

    PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Vierck CJ, Light AR (2000 Jan) Allodynia and hyperalgesia within dermatomes caudal to a spinal cord injury in primates and rodents. Prog Brain Res 129:411–428

    PubMed  Article  PubMed Central  Google Scholar 

  7. 7.

    Gustin SM, Wrigley PJ, Siddall PJ, Henderson LA (2010) Brain anatomy changes associated with persistent neuropathic pain following spinal cord injury. Cereb Cortex 20:1409–1419

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Wrigley PJ, Press SR, Gustin SM, Macefield VG, Gandevia SC, Cousins MJ, Middleton JW, Henderson LA, Siddall PJ (2009) Neuropathic pain and primary somatosensory cortex reorganization following spinal cord injury. Pain. 141:52–59

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Jensen M, Sherlin L, Getz K, Braden A, Kupper A, Gianas A et al (2012) Brain EEG activity correlates of chronic pain in persons with spinal cord injury: clinical implications. Spinal. 84:1–4

    Google Scholar 

  10. 10.

    Boord P, Siddall PJ, Tran Y, Herbert D, Middleton J, Craig A (2008) Electroencephalographic slowing and reduced reactivity in neuropathic pain following spinal cord injury. Spinal Cord 46(2):18–23

    Article  Google Scholar 

  11. 11.

    Vuckovic A, Hasan MA, Fraser M, Conway BA, Nasseroleslami B, Allan DB (2014) Dynamic oscillatory signatures of central neuropathic pain in spinal cord injury. J Pain 15(6)

  12. 12.

    Stern J, Jeanmonod D, Sarnthein J (2006) Persistent EEG overactivation in the cortical pain matrix of neurogenic pain patients. Neuroimage. 31:721–731

    PubMed  Article  Google Scholar 

  13. 13.

    Sarnthein J, Stern J, Aufenberg C, Rousson V, Jeanmonod D (2006) Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain. 129:55–64

    PubMed  Article  Google Scholar 

  14. 14.

    Michels L, Moazami-Goudarzi M, Jeanmonod D (2011) Correlations between EEG and clinical outcome in chronic neuropathic pain: surgical effects and treatment resistance. Brain Imaging Behav 5:329–348

    PubMed  Article  Google Scholar 

  15. 15.

    Oosterman JM, Derksen LC, Van Wijck AJM, Kessels RPC, Veldhuijzen DS, Oosterman JM et al (2012) Executive and attentional functions in chronic pain: does performance decrease with increasing task load ? Pain Res Manag 17(3):159–165

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Nadar MS, Jasem Z, Manee FS (2016) The cognitive functions in adults with chronic pain: a comparative study. Pain Res Manag 2016:1–8

    Article  Google Scholar 

  17. 17.

    Moriarty O, McGuire BE, Finn DP (2011) The effect of pain on cognitive function: a review of clinical and preclinical research. Prog Neurobiol 93(3):385–404

    PubMed  Article  Google Scholar 

  18. 18.

    Hasan MA, Fraser M, Conway BA, Allan DB, Vučković A (2016) Reversed cortical over-activity during movement imagination following neurofeedback treatment for central neuropathic pain. Clin Neurophysiol 127(9)

  19. 19.

    Gustin SM, Wrigley PJ, Henderson L a, Siddall PJ. Brain circuitry underlying pain in response to imagined movement in people with spinal cord injury. Pain 2010;148:438–445

  20. 20.

    Henderson LA, Gustin SM, Macey PM, Wrigley PJ, Siddall PJ (2011) Functional reorganization of the brain in humans following spinal cord injury: evidence for underlying changes in cortical anatomy. J Neurosci 31(7):2630–2637

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Wrigley PJ, Gustin SM, Macey PM, Nash PG, Gandevia SC, Macefield VG, Siddall PJ, Henderson LA (2009) Anatomical changes in human motor cortex and motor pathways following complete thoracic spinal cord injury. Cereb Cortex 19(1):224–232

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Takeuchi H, Taki Y, Sassa Y (2013) Brain structures associated with executive functions during everyday events in a non-clinical sample. Brain Struct Funct 218:1017–1032

    PubMed  Article  Google Scholar 

  23. 23.

    Dick BD (2007) Disruption of attention and working memory traces in individuals with chronic pain. Anesth Analg 104(5):1223–1229

    PubMed  Article  Google Scholar 

  24. 24.

    Moore DJ, Keogh E, Eccleston C (2012) The interruptive effect of pain on attention. Q J Exp Psychol 65(3):565–586

    Article  Google Scholar 

  25. 25.

    Heutink M, Post MW, Wollaars MM, Floris VA (2011 Jan) Chronic spinal cord injury pain: pharmacological and non-pharmacological treatments and treatment effectiveness. Disabil Rehabil 33(5):433–440

    PubMed  Article  Google Scholar 

  26. 26.

    Finnerup NB, Attal N, Haroutounian S, Moore A, Raja SN, Rice ASC (2015) Pharmacotherapy for neuropathic pain in adults: systematic review, meta-analysis and updated NeuPSIG recommendations. Lancet Neurol 14(2):162–173

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Attal N, Bouhassira D (2015 Apr) Pharmacotherapy of neuropathic pain: which drugs, which treatment algorithms? Pain. 156(Suppl):S104–S114

    PubMed  Article  Google Scholar 

  28. 28.

    Lefaucheur J, Mondor HH (2008) Use of repetitive transcranial magnetic stimulation in pain relief. Expert Rev Neurother 8(5):799–808

    PubMed  Article  Google Scholar 

  29. 29.

    Kang BS, Shin HI, Bang MS (2009 Oct) Effect of repetitive transcranial magnetic stimulation over the hand motor cortical area on central pain after spinal cord injury. Arch Phys Med Rehabil 90(10):1766–1771

    PubMed  Article  Google Scholar 

  30. 30.

    Defrin R, Grunhaus L, Zamir D, Zeilig G (2007) The effect of a series of repetitive transcranial magnetic stimulations of the motor cortex on central pain after spinal cord injury. Arch Phys Med Rehabil 88(12):1574–1580

    PubMed  Article  Google Scholar 

  31. 31.

    Jette F, Cote I, Meziane HB, Mercier C (2013) Effect of single-session repetitive transcranial magnetic stimulation applied over the hand versus leg motor area on pain after spinal cord injury. Neurorehabil Neural Repair 27(7):636–643

    PubMed  Article  Google Scholar 

  32. 32.

    Fregni F, Boggio PS, Lima MC, Ferreira MJL, Wagner T, Rigonatti SP, Castro AW, Souza DR, Riberto M, Freedman SD, Nitsche MA, Pascual-Leone A (2006 May) A sham-controlled, phase II trial of transcranial direct current stimulation for the treatment of central pain in traumatic spinal cord injury. Pain. 122:197–209

    PubMed  Article  Google Scholar 

  33. 33.

    Jensen MP, Sherlin LH, Askew RL, Fregni F, Witkop G, Gianas A, Howe JD, Hakimian S (2013) Effects of non-pharmacological pain treatments on brain states. Clin Neurophysiol 124:2016–2024

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Jensen MP, Barber J, Romano JM, Stoelb L, Cardenas DD, Patterson DR (2010) Effects of self-hypnosis training and EMG biofeedback relaxation training on chronic pain in persons with spinal cord injury. Int J Clin Exp Hypn 57(3):239–268

    Article  Google Scholar 

  35. 35.

    Ibric VL, Dragomirescu LG (2009) Neurofeedback in pain management. Introduction to quantitative EEG and neurofeedback: advancedtheory and applications 2nd ed, 417–451

  36. 36.

    Jensen MP, Gertz KJ, Kupper AE, Braden AL, Howe JD, Hakimian S, Sherlin LH (2013) Steps toward developing an EEG biofeedback treatment for chronic pain. Appl Psychophysiol Biofeedback 38(2):101–108

    PubMed  Article  Google Scholar 

  37. 37.

    Hassan MA, Fraser M, Conway BA, Allan DB, Vuckovic A (2015) The mechanism of neurofeedback training for treatment of central neuropathic pain in paraplegia : a pilot study. BMC Neurol 15(200):1–13

    CAS  Google Scholar 

  38. 38.

    Koberda JL, Koberda P, Bienkiewicz AA, Moses A, Koberda L (2013) Pain management using 19-electrode Z-score LORETA neurofeedback. J Neurother 17(3):179–190

  39. 39.

    Pascual-Marqui RD (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24:5–12

    PubMed  Google Scholar 

  40. 40.

    Peyron R, Laurent B, García-Larrea L (2000) Functional imaging of brain responses to pain. A review and meta-analysis (2000). Clin Neurophysiol 30(5):263–288

    CAS  Article  Google Scholar 

  41. 41.

    Hutchison WD, Andres ML, Dostrovsky J, Davis KD (1994) Altered pain and temperature perception following cingulotomy and capsulotomy in a patient with schizoaffective disorder. Pain. 59:189–199

    PubMed  Article  Google Scholar 

  42. 42.

    Frankenstein UN, Richter W, McIntyre MC, Rémy F (2001) Distraction modulates anterior cingulate gyrus activations during the cold pressor test. Neuroimage. 14:827–836

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Ness TJ, San Pedro EC, Richards JS, Kezar L, Liu HG, Mountz JM (1998) A case of spinal cord injury-related pain with baseline rCBF brain SPECT imaging and beneficial response to gabapentin. Pain. 78:139–143

    PubMed  Article  Google Scholar 

  44. 44.

    Baliki MN, Chialvo DR, Geha PY, Levy RM, Harden RN, Parrish TB, Apkarian AV (2006) Chronic pain and the emotional brain: specific brain activity associated with spontaneous fluctuations of intensity of chronic back pain. J Neurosci 26(47):12165–12173

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Valet M, Sprenger T, Boecker H, Willoch F, Rummeny E, Conrad B, Erhard P, Tolle TR (2004) Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain--an fMRI analysis. Pain. 109:399–408

    PubMed  Article  Google Scholar 

  46. 46.

    Rainville P (2002) Brain mechanisms of pain affect and pain modulation. Curr Opin Neurobiol 12(2):195–204

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Vogt BA (2009) Pain and emotion interactions in subregions of the cingulate gyrus. Nat Rev Neurosci 6(7):533–544

    Article  CAS  Google Scholar 

  48. 48.

    Fuster JM (2002) Frontal lobe and cognitive development. J Neurocytol 103(3):239–248

    Google Scholar 

  49. 49.

    Bjekić J, Živanović M, Purić D, Oosterman JM, Filipović SR (2018) Pain and executive functions: a unique relationship between Stroop task and experimentally induced pain. Psychol Res 82:580–589

    PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Abeare C, Cohen J, Axelrod B, Leisen J, Williams AM, Lumley M (2010) Pain, executive functioning, and affect in patients with rheumatoid arthritis. Clin J Pain 26(8):683–689

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Navratilova E, Frank Porreca. Reward and motivation in pain and pain relief. Nat Neurosci 2014;17(10):1304–1312

  52. 52.

    Rushworth MFS, Noonan MAP, Boorman ED, Walton ME, Behrens TE (2011) Frontal cortex and reward-guided learning and decision-making. Neuron. 70(6):1054–1069

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. TrendsCogn Sci 4(6):215–222

    CAS  Google Scholar 

  54. 54.

    Wiech K, Tracey I (2009) The influence of negative emotions on pain: behavioral effects and neural mechanisms. Neuroimage. 47(3):987–994

    PubMed  Article  Google Scholar 

  55. 55.

    Demerdzieva A, Pop-Jordanova N (2015) Relation between frontal alpha asymmetry and anxiety in young patients with generalized anxiety disorder. Pril Makedonska Akad na Nauk i Umet Oddelenie za Med Nauk 36(2):157–177

    Google Scholar 

  56. 56.

    Rossi AF, Pessoa L, Desimone R, Ungerleider LG (2009) The prefrontal cortex and the executive control of attention. Exp Brain Res 192(3):489–497

    PubMed  Article  Google Scholar 

  57. 57.

    Yang Z, Jackson T, Huang C (2016) Neural activation during anticipation of near pain-threshold stimulation among the pain-fearful. Front Neurosci 10(JUL):1–9

    Google Scholar 

  58. 58.

    Tracey I, Mantyh PW (2007) The cerebral signature for pain perception and its modulation. Neuron. 55(3):377–391

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Bushnell MC, Čeko M, Low LA (2015) Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci 14(7):502–511

    Article  CAS  Google Scholar 

  60. 60.

    Chapin H, Bagarinao E, Mackey S (2012) Real-time fMRI applied to pain management. Neurosci Lett 520:174–181

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    DeCharms CR, Maeda F, Glover GH, Ludlow D, Pauly JM, Soneji D et al (2005) Control over brain activation and pain learned by using real-time functional MRI. PNAS. 102(51):18626–18631

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Ozier D (2008) Researcher finds pain application for machine [Internet]. Edmont J

  63. 63.

    Ozier D (2010) LORETA neurotherapy for chronic pain related suffering. Neuroconnections 11–3

  64. 64.

    Khosropanah P, Ramli AR, Lim KS, Marhaban MH, Ahmedov A (2018) Fused multivariate empirical mode decomposition (MEMD) and inverse solution method for EEG source localization. Biomed Tech 63(4):467–479

    Article  Google Scholar 

  65. 65.

    Zarabla A, Ungania S, Cacciatore A, Maialetti A, Petreri G, Mengarelli A et al (2017) The usefulness of sLORETA in evaluating the effect of high-dose ARA-C on brain connectivity in patients with acute myeloid leukemia: an exploratory study. Funct Neurol 32(4):195–200

    Article  Google Scholar 

  66. 66.

    Lehmann D, Faber PL, Tei S, Pascual-Marqui RD, Milz P, Kochi K (2012) Reduced functional connectivity between cortical sources in five meditation traditions detected with lagged coherence using EEG tomography. Neuroimage. 60(2):1574–1586

    PubMed  Article  Google Scholar 

  67. 67.

    Koberda JL, Moses A, Koberda L, Koberda P (2012 Jul) Cognitive enhancement using 19-electrode Z-score neurofeedback. J Neurother 16(3):224–230

    Article  Google Scholar 

  68. 68.

    Zwoliński P, Roszkowski M, Żygierewicz J, Haufe S, Nolte G, Durka PJ (2010) Open database of epileptic EEG with mri and postoperational assessment of foci - a real world verification for the EEG inverse solutions. Neuroinformatics. 8(4):285–299

    PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Imperatori C, Brunetti R, Farina B, Speranza AM, Losurdo A, Testani E, Contardi A, Della Marca G (2014) Modification of EEG power spectra and EEG connectivity in autobiographical memory: a sLORETA study. Cogn Process 15(3):351–361

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Purcell and Dr. Mclean, Southern General Hospital, Glasgow, for choosing participants of the study and to all participants for taking part. This work has been partially supported by the MRC grant G0902257/1, the Glasgow Research Partnership in Engineering, NED University of Pakistan PhD scholarship, and by GU 68 trust University of Glasgow. We are also thankful to Ms. Sara Amjad and Mr. Usman Salim, NED University of Engineering & Technology, for providing their support regarding the use of sLORETA software.

Funding

NED University of Pakistan PhD scholarship, and MRC grant G0902257/1.

Author information

Affiliations

Authors

Contributions

We confirm that all authors have made substantial contributions to the research design, or the acquisition, analysis or interpretation of data; and to drafting the paper or reviewing it critically; and that all authors have approved the submitted version.

Corresponding author

Correspondence to Muhammad Abul Hasan.

Ethics declarations

Ethical approval

Ethical approval was obtained from the local national health care provider.

Informed consent

All the participants gave their informed consent.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hasan, M.A., Vuckovic, A., Qazi, S.A. et al. Immediate effect of neurofeedback training on the pain matrix and cortical areas involved in processing neuropsychological functions. Neurol Sci (2021). https://doi.org/10.1007/s10072-021-05125-1

Download citation

Keywords

  • Neurofeedback
  • Electroencephalogram
  • sLORETA
  • Pain matrix
  • Chronic pain