Skip to main content

Advertisement

Log in

Role of innate inflammation in traumatic brain injury

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Traumatic brain injury is one of the leading causes of morbidity and mortality throughout the world. Its increasing incidence, in addition to its fundamental role in the development of neurodegenerative disease, proves especially concerning. Despite extensive preclinical and clinical studies, researchers have yet to identify a safe and effective neuroprotective strategy. Following brain trauma, secondary injury from molecular, metabolic, and cellular changes causes progressive cerebral tissue damage. Chronic neuroinflammation following traumatic brain injuries is a key player in the development of secondary injury. Targeting this phenomenon for development of effective neuroprotective therapies holds promise. This strategy warrants a concrete understanding of complex neuroinflammatory mechanisms. In this review, we discuss pathophysiological mechanisms such as the innate immune response, glial activation, blood-brain barrier disruption, activation of immune mediators, as well as biological markers of traumatic brain injury. We then review existing and emerging pharmacological therapies that target neuroinflammation to improve functional outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AP-1:

activator protein 1

ATP:

adenosine triphosphate

BBB:

blood-brain barrier

BDNF:

brain-derived neurotrophic factor

CNS:

central nervous system

CSF:

cerebrospinal fluid

CSF1R:

colony stimulating factor 1 receptor

DAI:

diffuse axonal injury

DAMPs:

danger-associated molecular patterns

EPO:

erythropoietin

GCS:

Glasgow Coma Scale

GFAP:

glial fibrillary acidic protein

GR:

glucocorticoid receptors

ICP:

intracranial pressure

IL-1:

interleukin-1

IL-1R1:

IL-1 receptor type 1

IL-1Ra:

IL-1R antagonist protein

MAPK:

mitogen-activated protein kinase

MMP-9:

matrix metalloproteinase-9

Mtran:

mixed translational

NF:

neurofilament protein.

NF-κB:

nuclear factor-κB

NLRP3:

NLR family pyrin domain containing 3

NSE:

neuron-specific enolase

NVU:

neurovascular unit

PRRs:

pattern recognition receptors

ROS:

reactive oxygen species

SHH:

Sonic Hedgehog protein

TBI:

traumatic brain injury

TLRs:

toll-like receptors

TNF-α:

tumor necrosis factor alpha

UCHL1:

ubiquitin C-terminal hydrolase-L1

References

  1. Langlois JA, Rutland-Brown W, Wald MM (2006) The epidemiology and impact of traumatic brain injury: a brief overview. J Head Trauma Rehabil 21(5):375–378. https://doi.org/10.1097/00001199-200609000-00001

    Article  PubMed  Google Scholar 

  2. Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung YC, Punchak M, Agrawal A, Adeleye AO, Shrime MG, Rubiano AM, Rosenfeld JV, Park KB (2018) Estimating the global incidence of traumatic brain injury. J Neurosurg 130:1–18. https://doi.org/10.3171/2017.10.JNS17352

    Article  Google Scholar 

  3. Schimmel SJ, Acosta S, Lozano D (2017) Neuroinflammation in traumatic brain injury: a chronic response to an acute injury. Brain Circ 3(3):135–142. https://doi.org/10.4103/bc.bc_18_17

    Article  PubMed  PubMed Central  Google Scholar 

  4. de Freitas Cardoso MG, Faleiro RM, de Paula JJ, Kummer A, Caramelli P, Teixeira AL, de Souza LC, Miranda AS (2019) Cognitive impairment following Acute mild traumatic brain injury. Front Neurol 10:198. https://doi.org/10.3389/fneur.2019.00198

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ding K, Gupta PK, Diaz-Arrastia R (2016) Epilepsy after traumatic brain injury. In: Laskowitz D, Grant G (eds) translational research in traumatic brain injury. Frontiers in neuroscience, Boca Raton

    Google Scholar 

  6. Guo Z, Cupples LA, Kurz A, Auerbach SH, Volicer L, Chui H, Green RC, Sadovnick AD, Duara R, DeCarli C, Johnson K, Go RC, Growdon JH, Haines JL, Kukull WA, Farrer LA (2000) Head injury and the risk of AD in the MIRAGE study. Neurology 54(6):1316–1323. https://doi.org/10.1212/wnl.54.6.1316

    Article  CAS  PubMed  Google Scholar 

  7. Gardner RC, Byers AL, Barnes DE, Li Y, Boscardin J, Yaffe K (2018) Mild TBI and risk of Parkinson disease: a chronic effects of Neurotrauma consortium study. Neurology 90(20):e1771–e1779. https://doi.org/10.1212/WNL.0000000000005522

    Article  PubMed  PubMed Central  Google Scholar 

  8. Stein TD, Alvarez VE, McKee AC (2015) Concussion in chronic traumatic encephalopathy. Curr Pain Headache Rep 19(10):47. https://doi.org/10.1007/s11916-015-0522-z

    Article  PubMed  PubMed Central  Google Scholar 

  9. Voormolen DC, Polinder S, von Steinbuechel N, Vos PE, Cnossen MC, Haagsma JA (2019) The association between post-concussion symptoms and health-related quality of life in patients with mild traumatic brain injury. Injury 50(5):1068–1074

    Article  PubMed  Google Scholar 

  10. Jeremitsky E, Omert L, Dunham CM, Protetch J, Rodriguez A (2003) Harbingers of poor outcome the day after severe brain injury: hypothermia, hypoxia, and hypoperfusion. J Trauma 54(2):312–319. https://doi.org/10.1097/01.TA.0000037876.37236.D6

    Article  PubMed  Google Scholar 

  11. Toklu HZ, Tumer N (2015) Oxidative stress, brain edema, blood-brain barrier permeability, and autonomic dysfunction from traumatic brain injury. In: Kobeissy FH (ed) brain Neurotrauma: molecular, neuropsychological, and rehabilitation aspects. Frontiers in Neuroengineering, Boca Raton

    Google Scholar 

  12. Mannix R, Zemek R, Yeates KO, Arbogast K, Atabaki S, Badawy M, Beauchamp MH, Beer D, Bin S, Burstein B, Craig W, Corwin D, Doan Q, Ellis M, Freedman SB, Gagnon I, Gravel J, Leddy J, Lumba-Brown A, Master C, Mayer AR, Park G, Penque M, Rhine T, Russell K, Schneider K, Bell M, Wisniewski S (2019) Practice patterns in pharmacological and non-pharmacological therapies for children with mild traumatic brain injury: a survey of 15 Canadian and United States centers. J Neurotrauma 36(20):2886–2894. https://doi.org/10.1089/neu.2018.6290

    Article  PubMed  Google Scholar 

  13. Strbian D, Durukan A, Pitkonen M, Marinkovic I, Tatlisumak E, Pedrono E, Abo-Ramadan U, Tatlisumak T (2008) The blood-brain barrier is continuously open for several weeks following transient focal cerebral ischemia. Neuroscience 153(1):175–181. https://doi.org/10.1016/j.neuroscience.2008.02.012

    Article  CAS  PubMed  Google Scholar 

  14. Eberle BM, Schnüriger B, Inaba K, Gruen JP, Demetriades D, Belzberg H (2010) Decompressive craniectomy: surgical control of traumatic intracranial hypertension may improve outcome. Injury 41(9):894–898. https://doi.org/10.1016/j.injury.2010.02.023

    Article  PubMed  Google Scholar 

  15. Bergold PJ (2016) Treatment of traumatic brain injury with anti-inflammatory drugs. Exp Neurol 275(Pt 3):367–380. https://doi.org/10.1016/j.expneurol.2015.05.024

    Article  CAS  PubMed  Google Scholar 

  16. Simon DW, McGeachy MJ, Bayir H, Clark RS, Loane DJ, Kochanek PM (2017) The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol 13(3):171–191. https://doi.org/10.1038/nrneurol.2017.13

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liu LR, Liu JC, Bao JS, Bai QQ, Wang GQ (2020) Interaction of microglia and astrocytes in the neurovascular unit. Front Immunol 11:1024. https://doi.org/10.3389/fimmu.2020.01024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kumar A, Alvarez-Croda DM, Stoica BA, Faden AI, Loane DJ (2016) Microglial/macrophage polarization dynamics following traumatic brain injury. J Neurotrauma 33(19):1732–1750. https://doi.org/10.1089/neu.2015.4268

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ramlackhansingh AF, Brooks DJ, Greenwood RJ, Bose SK, Turkheimer FE, Kinnunen KM, Gentleman S, Heckemann RA, Gunanayagam K, Gelosa G, Sharp DJ (2011) Inflammation after trauma: microglial activation and traumatic brain injury. Ann Neurol 70(3):374–383. https://doi.org/10.1002/ana.22455

    Article  PubMed  Google Scholar 

  20. Zhou Y, Shao A, Yao Y, Tu S, Deng Y, Zhang J (2020) Dual roles of astrocytes in plasticity and reconstruction after traumatic brain injury. Cell Commun Signal 18(1):62. https://doi.org/10.1186/s12964-020-00549-2

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19(8):987–991. https://doi.org/10.1038/nn.4338

    Article  CAS  PubMed  Google Scholar 

  22. Martinez FO, Gordon S (2014) The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 6:13. https://doi.org/10.12703/P6-13

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, Gohel TD, Emde M, Schmidleithner L, Ganesan H, Nino-Castro A, Mallmann MR, Labzin L, Theis H, Kraut M, Beyer M, Latz E, Freeman TC, Ulas T, Schultze JL (2014) Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity 40(2):274–288. https://doi.org/10.1016/j.immuni.2014.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hsieh CL, Kim CC, Ryba BE, Niemi EC, Bando JK, Locksley RM, Liu J, Nakamura MC, Seaman WE (2013) Traumatic brain injury induces macrophage subsets in the brain. Eur J Immunol 43(8):2010–2022. https://doi.org/10.1002/eji.201243084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim CC, Nakamura MC, Hsieh CL (2016) Brain trauma elicits non-canonical macrophage activation states. J Neuroinflammation 13(1):117. https://doi.org/10.1186/s12974-016-0581-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Alvarez JI, Katayama T, Prat A (2013) Glial influence on the blood brain barrier. Glia 61(12):1939–1958. https://doi.org/10.1002/glia.22575

    Article  PubMed  PubMed Central  Google Scholar 

  27. Morganti-Kossman MC, Lenzlinger PM, Hans V, Stahel P, Csuka E, Ammann E, Stocker R, Trentz O, Kossmann T (1997) Production of cytokines following brain injury: beneficial and deleterious for the damaged tissue. Mol Psychiatry 2(2):133–136. https://doi.org/10.1038/sj.mp.4000227

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Jin S, Sonobe Y, Cheng Y, Horiuchi H, Parajuli B, Kawanokuchi J, Mizuno T, Takeuchi H, Suzumura A (2014) Interleukin-1beta induces blood-brain barrier disruption by downregulating sonic hedgehog in astrocytes. PLoS One 9(10):e110024. https://doi.org/10.1371/journal.pone.0110024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Burda JE, Bernstein AM, Sofroniew MV (2016) Astrocyte roles in traumatic brain injury. Exp Neurol 275(Pt 3):305–315. https://doi.org/10.1016/j.expneurol.2015.03.020

    Article  CAS  PubMed  Google Scholar 

  30. Maxwell WL (2013) Damage to myelin and oligodendrocytes: a role in chronic outcomes following traumatic brain injury? Brain Sci 3(3):1374–1394. https://doi.org/10.3390/brainsci3031374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nawaz S, Kippert A, Saab AS, Werner HB, Lang T, Nave KA, Simons M (2009) Phosphatidylinositol 4,5-bisphosphate-dependent interaction of myelin basic protein with the plasma membrane in oligodendroglial cells and its rapid perturbation by elevated calcium. J Neurosci 29(15):4794–4807. https://doi.org/10.1523/JNEUROSCI.3955-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marion CM, Radomski KL, Cramer NP, Galdzicki Z, Armstrong RC (2018) Experimental traumatic brain injury identifies distinct early and late phase axonal conduction deficits of white matter pathophysiology, and reveals intervening recovery. J Neurosci 38(41):8723–8736. https://doi.org/10.1523/JNEUROSCI.0819-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miyamoto N, Maki T, Shindo A, Liang AC, Maeda M, Egawa N, Itoh K, Lo EK, Lok J, Ihara M, Arai K (2015) Astrocytes promote Oligodendrogenesis after white matter damage via brain-derived Neurotrophic factor. J Neurosci 35(41):14002–14008. https://doi.org/10.1523/JNEUROSCI.1592-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nutma E, van Gent D, Amor S, Peferoen LAN (2020) Astrocyte and oligodendrocyte cross-talk in the central nervous system. Cells 9(3):600. https://doi.org/10.3390/cells9030600

    Article  CAS  PubMed Central  Google Scholar 

  35. Mierzwa AJ, Marion CM, Sullivan GM, McDaniel DP, Armstrong RC (2015) Components of myelin damage and repair in the progression of white matter pathology after mild traumatic brain injury. J Neuropathol Exp Neurol 74(3):218–232. https://doi.org/10.1097/NEN.0000000000000165

    Article  PubMed  Google Scholar 

  36. Chodobski A, Zink BJ, Szmydynger-Chodobska J (2011) Blood-brain barrier pathophysiology in traumatic brain injury. Transl Stroke Res 2(4):492–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Price L, Wilson C, Grant G (2016) Blood-brain barrier pathophysiology following traumatic brain injury. In: Laskowitz D, Grant G (eds) translational research in traumatic brain injury. Frontiers in neuroscience, Boca Raton

    Google Scholar 

  38. Abdul-Muneer PM, Schuetz H, Wang F, Skotak M, Jones J, Gorantla S, Zimmerman MC, Chandra N, Haorah J (2013) Induction of oxidative and nitrosative damage leads to cerebrovascular inflammation in an animal model of mild traumatic brain injury induced by primary blast. Free Radic Biol Med 60:282–291. https://doi.org/10.1016/j.freeradbiomed.2013.02.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang F, Zhao K, Zhang X, Zhang J, Xu B (2016) ATP induces disruption of tight junction proteins via IL-1 Beta-dependent MMP-9 activation of human blood-brain barrier in vitro. Neural Plast 2016:8928530–8928512. https://doi.org/10.1155/2016/8928530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dorsett CR, McGuire JL, Niedzielko TL, DePasquale EA, Meller J, Floyd CL, McCullumsmith RE (2017) Traumatic brain injury induces alterations in cortical glutamate uptake without a reduction in glutamate Transporter-1 protein expression. J Neurotrauma 34(1):220–234. https://doi.org/10.1089/neu.2015.4372

    Article  PubMed  PubMed Central  Google Scholar 

  41. Goodrich GS, Kabakov AY, Hameed MQ, Dhamne SC, Rosenberg PA, Rotenberg A (2013) Ceftriaxone treatment after traumatic brain injury restores expression of the glutamate transporter, GLT-1, reduces regional gliosis, and reduces post-traumatic seizures in the rat. J Neurotrauma 30(16):1434–1441. https://doi.org/10.1089/neu.2012.2712

    Article  PubMed  PubMed Central  Google Scholar 

  42. Simoes AP, Silva CG, Marques JM, Pochmann D, Porciuncula LO, Ferreira S, Oses JP, Beleza RO, Real JI, Kofalvi A, Bahr BA, Lerma J, Cunha RA, Rodrigues RJ (2018) Glutamate-induced and NMDA receptor-mediated neurodegeneration entails P2Y1 receptor activation. Cell Death Dis 9(3):297

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rodrigues RJ, Tome AR, Cunha RA (2015) ATP as a multi-target danger signal in the brain. Front Neurosci 9:148. https://doi.org/10.3389/fnins.2015.00148

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hua F, Ma J, Ha T, Xia Y, Kelley J, Williams DL, Kao RL, Browder IW, Schweitzer JB, Kalbfleisch JH, Li C (2007) Activation of toll-like receptor 4 signaling contributes to hippocampal neuronal death following global cerebral ischemia/reperfusion. J Neuroimmunol 190(1–2):101–111. https://doi.org/10.1016/j.jneuroim.2007.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Corrigan F, Arulsamy A, Collins-Praino LE, Holmes JL, Vink R (2017) Toll like receptor 4 activation can be either detrimental or beneficial following mild repetitive traumatic brain injury depending on timing of activation. Brain Behav Immun 64:124–139

    Article  CAS  PubMed  Google Scholar 

  46. Clark IA, Vissel B (2017) The meteorology of cytokine storms, and the clinical usefulness of this knowledge. Semin Immunopathol 39(5):505–516. https://doi.org/10.1007/s00281-017-0628-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Scherbel U, Raghupathi R, Nakamura M, Saatman KE, Trojanowski JQ, Neugebauer E, Marino MW, McIntosh TK (1999) Differential acute and chronic responses of tumor necrosis factor-deficient mice to experimental brain injury. Proc Natl Acad Sci U S A 96(15):8721–8726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Mettang M, Reichel SN, Lattke M, Palmer A, Abaei A, Rasche V, Huber-Lang M, Baumann B, Wirth T (2018) IKK2/NF-kappaB signaling protects neurons after traumatic brain injury. FASEB J 32(4):1916–1932. https://doi.org/10.1096/fj.201700826R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Agoston DV, Shutes-David A, Peskind ER (2017) Biofluid biomarkers of traumatic brain injury. Brain Inj 31(9):1195–1203. https://doi.org/10.1080/02699052.2017.1357836

    Article  PubMed  Google Scholar 

  50. Al Nimer F, Thelin E, Nystrom H, Dring AM, Svenningsson A, Piehl F, Nelson DW, Bellander BM (2015) Comparative assessment of the prognostic value of biomarkers in traumatic brain injury reveals an independent role for serum levels of Neurofilament light. PLoS One 10(7):e0132177. https://doi.org/10.1371/journal.pone.0132177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mondello S, Sorinola A, Czeiter E, Vamos Z, Amrein K, Synnot A, Donoghue E, Sandor J, Wang KKW, Diaz-Arrastia R, Steyerberg EW, Menon DK, Maas AIR, Buki A (2018) Blood-based protein biomarkers for the management of traumatic brain injuries in adults presenting to emergency departments with mild brain injury: a living systematic review and meta-analysis. J Neurotrauma. https://doi.org/10.1089/neu.2017.5182

  52. Ben Abdesselam O, Vally J, Adem C, Foglietti MJ, Beaudeux JL (2003) Reference values for serum S-100B protein depend on the race of individuals. Clin Chem 49(5):836–837. https://doi.org/10.1373/49.5.836

    Article  CAS  PubMed  Google Scholar 

  53. Wang KK, Yang Z, Zhu T, Shi Y, Rubenstein R, Tyndall JA, Manley GT (2018) An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Rev Mol Diagn 18(2):165–180

    Article  PubMed  PubMed Central  Google Scholar 

  54. Bramlett HM, Dietrich WD, Dixon CE, Shear DA, Schmid KE, Mondello S, Wang KK, Hayes RL, Povlishock JT, Tortella FC, Kochanek PM (2016) Erythropoietin treatment in traumatic brain injury: operation brain trauma therapy. J Neurotrauma 33(6):538–552. https://doi.org/10.1089/neu.2015.4116

    Article  PubMed  Google Scholar 

  55. Thelin EP, Bellander BM, Nekludov M (2015) Biochemical response to hyperbaric oxygen treatment of a transhemispheric penetrating cerebral gunshot injury. Front Neurol 6:62. https://doi.org/10.3389/fneur.2015.00062

    Article  PubMed  PubMed Central  Google Scholar 

  56. Li ZM, Xiao YL, Zhu JX, Geng FY, Guo CJ, Chong ZL, Wang LX (2016) Recombinant human erythropoietin improves functional recovery in patients with severe traumatic brain injury: a randomized, double blind and controlled clinical trial. Clin Neurol Neurosurg 150:80–83. https://doi.org/10.1016/j.clineuro.2016.09.001

    Article  PubMed  Google Scholar 

  57. Selleck MJ, Senthil M, Wall NR (2017) Making meaningful clinical use of biomarkers. Biomark Insights 12:1177271917715236. https://doi.org/10.1177/1177271917715236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bartholdi D, Schwab ME (1995) Methylprednisolone inhibits early inflammatory processes but not ischemic cell death after experimental spinal cord lesion in the rat. Brain Res 672(1–2):177–186. https://doi.org/10.1016/0006-8993(94)01410-j

    Article  CAS  PubMed  Google Scholar 

  59. De Bosscher K, Vanden Berghe W, Haegeman G (2003) The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: molecular mechanisms for gene repression. Endocr Rev 24(4):488–522. https://doi.org/10.1210/er.2002-0006

    Article  CAS  PubMed  Google Scholar 

  60. Andersen C, Astrup J, Gyldensted C (1994) Quantitation of peritumoural oedema and the effect of steroids using NMR-relaxation time imaging and blood-brain barrier analysis. Acta Neurochir Suppl (Wien) 60:413–415. https://doi.org/10.1007/978-3-7091-9334-1_112

    Article  CAS  Google Scholar 

  61. Forster C, Silwedel C, Golenhofen N, Burek M, Kietz S, Mankertz J, Drenckhahn D (2005) Occludin as direct target for glucocorticoid-induced improvement of blood-brain barrier properties in a murine in vitro system. J Physiol 565(Pt 2):475–486

    Article  PubMed  PubMed Central  Google Scholar 

  62. Roberts I, Yates D, Sandercock P, Farrell B, Wasserberg J, Lomas G, Cottingham R, Svoboda P, Brayley N, Mazairac G, Laloe V, Munoz-Sanchez A, Arango M, Hartzenberg B, Khamis H, Yutthakasemsunt S, Komolafe E, Olldashi F, Yadav Y, Murillo-Cabezas F, Shakur H, Edwards P, collaborators Ct (2004) Effect of intravenous corticosteroids on death within 14 days in 10008 adults with clinically significant head injury (MRC CRASH trial): randomised placebo-controlled trial. Lancet 364(9442):1321–1328. https://doi.org/10.1016/S0140-6736(04)17188-2

    Article  CAS  PubMed  Google Scholar 

  63. Gaab MR, Trost HA, Alcantara A, Karimi-Nejad A, Moskopp D, Schultheiss R, Bock WJ, Piek J, Klinge H, Scheil F et al (1994) “Ultrahigh” dexamethasone in acute brain injury. Results from a prospective randomized double-blind multicenter trial (GUDHIS). German Ultrahigh Dexamethasone Head Injury Study Group. Zentralbl Neurochir 55(3):135–143

    CAS  PubMed  Google Scholar 

  64. Douglas IS (2005) Possible explanations for the results of CRASH. Lancet 365(9455):212; author reply 213-214. https://doi.org/10.1016/S0140-6736(05)17732-0

    Article  PubMed  Google Scholar 

  65. Kasperlik-Zaluska AA, Slowi’nska-Srzednicka J, Bonicki W, Kunicki J (2005) Possible explanations for the results of CRASH. Lancet 365(9455):212–213; author reply 213-214. https://doi.org/10.1016/S0140-6736(05)17733-2

    Article  PubMed  Google Scholar 

  66. Edwards P, Arango M, Balica L, Cottingham R, El-Sayed H, Farrell B, Fernandes J, Gogichaisvili T, Golden N, Hartzenberg B, Husain M, Ulloa MI, Jerbi Z, Khamis H, Komolafe E, Laloe V, Lomas G, Ludwig S, Mazairac G, Munoz Sanchez MA, Nasi L, Olldashi F, Plunkett P, Roberts I, Sandercock P, Shakur H, Soler C, Stocker R, Svoboda P, Trenkler S, Venkataramana NK, Wasserberg J, Yates D, Yutthakasemsunt S, collaborators Ct (2005) Final results of MRC CRASH, a randomised placebo-controlled trial of intravenous corticosteroid in adults with head injury-outcomes at 6 months. Lancet (London, England) 365(9475):1957–1959

    Article  Google Scholar 

  67. Fan LW, Lin S, Pang Y, Rhodes PG, Cai Z (2006) Minocycline attenuates hypoxia-ischemia-induced neurological dysfunction and brain injury in the juvenile rat. Eur J Neurosci 24(2):341–350. https://doi.org/10.1111/j.1460-9568.2006.04918.x

    Article  PubMed  Google Scholar 

  68. Cikla U, Chanana V, Kintner DB, Covert L, Dewall T, Waldman A, Rowley P, Cengiz P, Ferrazzano P (2016) Suppression of microglia activation after hypoxia-ischemia results in age-dependent improvements in neurologic injury. J Neuroimmunol 291:18–27. https://doi.org/10.1016/j.jneuroim.2015.12.004

    Article  CAS  PubMed  Google Scholar 

  69. Thau-Zuchman O, Shohami E, Alexandrovich AG, Trembovler V, Leker RR (2012) The anti-inflammatory drug carprofen improves long-term outcome and induces gliogenesis after traumatic brain injury. J Neurotrauma 29(2):375–384. https://doi.org/10.1089/neu.2010.1673

    Article  PubMed  Google Scholar 

  70. Chao P-K, Lu K-T, Jhu J-Y, Wo Y-YP, Huang T-C, Ro L-S, Yang Y-L (2012) Indomethacin protects rats from neuronal damage induced by traumatic brain injury and suppresses hippocampal IL-1beta release through the inhibition of Nogo-a expression. J Neuroinflammation 9:121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Scott G, Zetterberg H, Jolly A, Cole JH, De Simoni S, Jenkins PO, Feeney C, Owen DR, Lingford-Hughes A, Howes O, Patel MC, Goldstone AP, Gunn RN, Blennow K, Matthews PM, Sharp DJ (2018) Minocycline reduces chronic microglial activation after brain trauma but increases neurodegeneration. Brain 141(2):459–471. https://doi.org/10.1093/brain/awx339

    Article  PubMed  Google Scholar 

  72. Godoy DA, Alvarez E, Manzi R, Pinero G, Di Napoli M (2014) The physiologic effects of indomethacin test on CPP and ICP in severe traumatic brain injury (sTBI). Neurocrit Care 20(2):230–239. https://doi.org/10.1007/s12028-013-9924-0

    Article  CAS  PubMed  Google Scholar 

  73. Godoy DA, Suarez PDG, Moscote-Salazar LR, Napoli MD (2017) Side effects of indomethacin in refractory post-traumatic intracranial hypertension: a comprehensive case study and review. Bull Emerg Trauma 5(3):143–151

    PubMed  PubMed Central  Google Scholar 

  74. Donnelly C, Frobese AS, Stone HH (1956) The effect of lowered body temperature on the cerebral hemodynamics and metabolism of man. Surg Gynecol Obstet 103(3):313–317

    CAS  PubMed  Google Scholar 

  75. Busto R, Globus MY, Dietrich WD, Martinez E, Valdes I, Ginsberg MD (1989) Effect of mild hypothermia on ischemia-induced release of neurotransmitters and free fatty acids in rat brain. Stroke 20(7):904–910. https://doi.org/10.1161/01.str.20.7.904

    Article  CAS  PubMed  Google Scholar 

  76. Smith SL, Hall ED (1996) Mild pre- and posttraumatic hypothermia attenuates blood-brain barrier damage following controlled cortical impact injury in the rat. J Neurotrauma 13(1):1–9. https://doi.org/10.1089/neu.1996.13.1

    Article  CAS  PubMed  Google Scholar 

  77. Clifton GL, Jiang JY, Lyeth BG, Jenkins LW, Hamm RJ, Hayes RL (1991) Marked protection by moderate hypothermia after experimental traumatic brain injury. J Cereb Blood Flow Metab 11(1):114–121. https://doi.org/10.1038/jcbfm.1991.13

    Article  CAS  PubMed  Google Scholar 

  78. Jiang JY, Lyeth BG, Kapasi MZ, Jenkins LW, Povlishock JT (1992) Moderate hypothermia reduces blood-brain barrier disruption following traumatic brain injury in the rat. Acta Neuropathol 84(5):495–500. https://doi.org/10.1007/BF00304468

    Article  CAS  PubMed  Google Scholar 

  79. Lyeth BG, Jiang JY, Robinson SE, Guo H, Jenkins LW (1993) Hypothermia blunts acetylcholine increase in CSF of traumatically brain injured rats. Mol Chem Neuropathol 18(3):247–256. https://doi.org/10.1007/BF03160117

    Article  CAS  PubMed  Google Scholar 

  80. Clifton GL, Miller ER, Choi SC, Levin HS, McCauley S, Smith KR Jr, Muizelaar JP, Wagner FC Jr, Marion DW, Luerssen TG, Chesnut RM, Schwartz M (2001) Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med 344(8):556–563. https://doi.org/10.1056/NEJM200102223440803

    Article  CAS  PubMed  Google Scholar 

  81. Cooper DJ, Nichol AD, Bailey M, Bernard S, Cameron PA, Pili-Floury S, Forbes A, Gantner D, Higgins AM, Huet O, Kasza J, Murray L, Newby L, Presneill JJ, Rashford S, Rosenfeld JV, Stephenson M, Vallance S, Varma D, Webb SAR, Trapani T, McArthur C, Investigators PT, the ACTG (2018) Effect of early sustained prophylactic hypothermia on neurologic outcomes among patients with severe traumatic brain injury: the POLAR randomized clinical trial. JAMA 320(21):2211–2220. https://doi.org/10.1001/jama.2018.17075

    Article  PubMed  PubMed Central  Google Scholar 

  82. Hutchison JS, Ward RE, Lacroix J, Hebert PC, Barnes MA, Bohn DJ, Dirks PB, Doucette S, Fergusson D, Gottesman R, Joffe AR, Kirpalani HM, Meyer PG, Morris KP, Moher D, Singh RN, Skippen PW, Hypothermia Pediatric Head Injury Trial I, the Canadian Critical Care Trials G (2008) Hypothermia therapy after traumatic brain injury in children. N Engl J Med 358(23):2447–2456. https://doi.org/10.1056/NEJMoa0706930

    Article  CAS  PubMed  Google Scholar 

  83. Reuter-Rice K, Christoferson E (2020) Critical update on the third edition of the guidelines for managing severe traumatic brain injury in children. Am J Crit Care 29(1):e13–e18. https://doi.org/10.4037/ajcc2020228

    Article  PubMed  Google Scholar 

  84. Ng HK, Hanel R, Freeman W (2009) Prolonged mild-to-moderate hypothermia for refractory intracranial hypertension. J Vasc Interv Neurol 2(1):142–146

    PubMed  PubMed Central  Google Scholar 

  85. Brotfain E, Gruenbaum SE, Boyko M, Kutz R, Zlotnik A, Klein M (2016) Neuroprotection by estrogen and progesterone in traumatic brain injury and spinal cord injury. Curr Neuropharmacol 14(6):641–653. https://doi.org/10.2174/1570159x14666160309123554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wright DW, Kellermann AL, Hertzberg VS, Clark PL, Frankel M, Goldstein FC, Salomone JP, Dent LL, Harris OA, Ander DS, Lowery DW, Patel MM, Denson DD, Gordon AB, Wald MM, Gupta S, Hoffman SW, Stein DG (2007) ProTECT: a randomized clinical trial of progesterone for acute traumatic brain injury. Ann Emerg Med 49(4):391–402, 402 e391–392. https://doi.org/10.1016/j.annemergmed.2006.07.932

    Article  PubMed  Google Scholar 

  87. Lykissas MG, Korompilias AV, Vekris MD, Mitsionis GI, Sakellariou E, Beris AE (2007) The role of erythropoietin in central and peripheral nerve injury. Clin Neurol Neurosurg 109(8):639–644. https://doi.org/10.1016/j.clineuro.2007.05.013

    Article  PubMed  Google Scholar 

  88. Villa P, Bigini P, Mennini T, Agnello D, Laragione T, Cagnotto A, Viviani B, Marinovich M, Cerami A, Coleman TR, Brines M, Ghezzi P (2003) Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med 198(6):971–975. https://doi.org/10.1084/jem.20021067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nichol A, French C, Little L, Haddad S, Presneill J, Arabi Y, Bailey M, Cooper DJ, Duranteau J, Huet O, Mak A, McArthur C, Pettila V, Skrifvars M, Vallance S, Varma D, Wills J, Bellomo R, Investigators E-T, Group ACT (2015) Erythropoietin in traumatic brain injury (EPO-TBI): a double-blind randomised controlled trial. Lancet 386(10012):2499–2506. https://doi.org/10.1016/S0140-6736(15)00386-4

    Article  CAS  PubMed  Google Scholar 

  90. Chin LM, Keyser RE, Dsurney J, Chan L (2015) Improved cognitive performance following aerobic exercise training in people with traumatic brain injury. Arch Phys Med Rehabil 96(4):754–759

    Article  PubMed  Google Scholar 

  91. Gordon WA, Sliwinski M, Echo J, McLoughlin M, Sheerer MS, Meili TE (1998) The benefits of exercise in individuals with traumatic brain injury: a retrospective study. J Head Trauma Rehabil 13(4):58–67. https://doi.org/10.1097/00001199-199808000-00006

    Article  CAS  PubMed  Google Scholar 

  92. Griesbach GS, Hovda DA, Molteni R, Wu A, Gomez-Pinilla F (2004) Voluntary exercise following traumatic brain injury: brain-derived neurotrophic factor upregulation and recovery of function. Neuroscience 125(1):129–139. https://doi.org/10.1016/j.neuroscience.2004.01.030

    Article  CAS  PubMed  Google Scholar 

  93. Mota BC, Pereira L, Souza MA, Silva LF, Magni DV, Ferreira AP, Oliveira MS, Furian AF, Mazzardo-Martins L, Silva MD, Santos AR, Ferreira J, Fighera MR, Royes LF (2012) Exercise pre-conditioning reduces brain inflammation and protects against toxicity induced by traumatic brain injury: behavioral and neurochemical approach. Neurotox Res 21(2):175–184. https://doi.org/10.1007/s12640-011-9257-8

    Article  CAS  PubMed  Google Scholar 

  94. Henry RJ, Ritzel RM, Barrett JP, Doran SJ, Jiao Y, Leach JB, Szeto GL, Wu J, Stoica BA, Faden AI, Loane DJ (2020) Microglial depletion with CSF1R inhibitor during chronic phase of experimental traumatic brain injury reduces Neurodegeneration and neurological deficits. J Neurosci 40(14):2960–2974. https://doi.org/10.1523/JNEUROSCI.2402-19.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lei F, Cui N, Zhou C, Chodosh J, Vavvas DG, Paschalis EI (2020) CSF1R inhibition by a small-molecule inhibitor is not microglia specific; affecting hematopoiesis and the function of macrophages. Proc Natl Acad Sci U S A 117(38):23336–23338. https://doi.org/10.1073/pnas.1922788117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Willis EF, MacDonald KPA, Nguyen QH, Garrido AL, Gillespie ER, Harley SBR, Bartlett PF, Schroder WA, Yates AG, Anthony DC, Rose-John S, Ruitenberg MJ, Vukovic J (2020) Repopulating microglia promote brain repair in an IL-6-dependent manner. Cell 180(5):833–846 e816. https://doi.org/10.1016/j.cell.2020.02.013

    Article  CAS  PubMed  Google Scholar 

  97. Frei K, Nohava K, Malipiero UV, Schwerdel C, Fontana A (1992) Production of macrophage colony-stimulating factor by astrocytes and brain macrophages. J Neuroimmunol 40(2–3):189–195. https://doi.org/10.1016/0165-5728(92)90133-6

    Article  CAS  PubMed  Google Scholar 

  98. Tobinick E, Rodriguez-Romanacce H, Levine A, Ignatowski TA, Spengler RN (2014) Immediate neurological recovery following perispinal etanercept years after brain injury. Clin Drug Investig 34(5):361–366. https://doi.org/10.1007/s40261-014-0186-1

    Article  CAS  PubMed  Google Scholar 

  99. Tobinick E, Kim NM, Reyzin G, Rodriguez-Romanacce H, DePuy V (2012) Selective TNF inhibition for chronic stroke and traumatic brain injury: an observational study involving 629 consecutive patients treated with perispinal etanercept. CNS Drugs 26(12):1051–1070. https://doi.org/10.1007/s40263-012-0013-2

    Article  CAS  PubMed  Google Scholar 

  100. Tuttolomondo A, Pecoraro R, Pinto A (2014) Studies of selective TNF inhibitors in the treatment of brain injury from stroke and trauma: a review of the evidence to date. Drug Des Devel Ther 8:2221–2238. https://doi.org/10.2147/DDDT.S67655

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hergenroeder GW, Moore AN, McCoy JP Jr, Samsel L, Ward NH 3rd, Clifton GL, Dash PK (2010) Serum IL-6: a candidate biomarker for intracranial pressure elevation following isolated traumatic brain injury. J Neuroinflammation 7:19. https://doi.org/10.1186/1742-2094-7-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kossmann T, Hans VH, Imhof HG, Stocker R, Grob P, Trentz O, Morganti-Kossmann C (1995) Intrathecal and serum interleukin-6 and the acute-phase response in patients with severe traumatic brain injuries. Shock 4(5):311–317. https://doi.org/10.1097/00024382-199511000-00001

    Article  CAS  PubMed  Google Scholar 

  103. Penkowa M, Moos T, Carrasco J, Hadberg H, Molinero A, Bluethmann H, Hidalgo J (1999) Strongly compromised inflammatory response to brain injury in interleukin-6-deficient mice. Glia 25(4):343–357

    Article  CAS  PubMed  Google Scholar 

  104. Klein MA, Moller JC, Jones LL, Bluethmann H, Kreutzberg GW, Raivich G (1997) Impaired neuroglial activation in interleukin-6 deficient mice. Glia 19(3):227–233

    Article  CAS  PubMed  Google Scholar 

  105. Yang SH, Gangidine M, Pritts TA, Goodman MD, Lentsch AB (2013) Interleukin 6 mediates neuroinflammation and motor coordination deficits after mild traumatic brain injury and brief hypoxia in mice. Shock 40(6):471–475. https://doi.org/10.1097/SHK.0000000000000037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Menu P, Vince JE (2011) The NLRP3 inflammasome in health and disease: the good, the bad and the ugly. Clin Exp Immunol 166(1):1–15. https://doi.org/10.1111/j.1365-2249.2011.04440.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7(2):99–109. https://doi.org/10.1038/nrmicro2070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kuwar R, Rolfe A, Di L, Xu H, He L, Jiang Y, Zhang S, Sun D (2019) A novel small molecular NLRP3 inflammasome inhibitor alleviates neuroinflammatory response following traumatic brain injury. J Neuroinflammation 16(1):81. https://doi.org/10.1186/s12974-019-1471-y

    Article  PubMed  PubMed Central  Google Scholar 

  109. Ma MW, Wang J, Dhandapani KM, Brann DW (2017) NADPH oxidase 2 regulates NLRP3 Inflammasome activation in the brain after traumatic brain injury. Oxidative Med Cell Longev 2017:6057609–6057618. https://doi.org/10.1155/2017/6057609

    Article  CAS  Google Scholar 

  110. de Rivero Vaccari JP, Lotocki G, Alonso OF, Bramlett HM, Dietrich WD, Keane RW (2009) Therapeutic neutralization of the NLRP1 inflammasome reduces the innate immune response and improves histopathology after traumatic brain injury. J Cereb Blood Flow Metab 29(7):1251–1261. https://doi.org/10.1038/jcbfm.2009.46

    Article  CAS  PubMed  Google Scholar 

  111. Xu X, Yin D, Ren H, Gao W, Li F, Sun D, Wu Y, Zhou S, Lyu L, Yang M, Xiong J, Han L, Jiang R, Zhang J (2018) Selective NLRP3 inflammasome inhibitor reduces neuroinflammation and improves long-term neurological outcomes in a murine model of traumatic brain injury. Neurobiol Dis 117:15–27. https://doi.org/10.1016/j.nbd.2018.05.016

    Article  CAS  PubMed  Google Scholar 

  112. Liu W, Chen Y, Meng J, Wu M, Bi F, Chang C, Li H, Zhang L (2018) Ablation of caspase-1 protects against TBI-induced pyroptosis in vitro and in vivo. J Neuroinflammation 15(1):48. https://doi.org/10.1186/s12974-018-1083-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Sun Z, Nyanzu M, Yang S, Zhu X, Wang K, Ru J, Yu E, Zhang H, Wang Z, Shen J, Zhuge Q, Huang L (2020) VX765 attenuates Pyroptosis and HMGB1/TLR4/NF-kappaB pathways to improve functional outcomes in TBI mice. Oxidative Med Cell Longev 2020:7879629. https://doi.org/10.1155/2020/7879629

    Article  CAS  Google Scholar 

  114. Chiaretti A, Genovese O, Aloe L, Antonelli A, Piastra M, Polidori G, Di Rocco C (2005) Interleukin 1beta and interleukin 6 relationship with paediatric head trauma severity and outcome. Childs Nerv Syst 21(3):185–193; discussion 194. https://doi.org/10.1007/s00381-004-1032-1

    Article  PubMed  Google Scholar 

  115. Brough D, Rothwell NJ, Allan SM (2015) Interleukin-1 as a pharmacological target in acute brain injury. Exp Physiol 100(12):1488–1494. https://doi.org/10.1113/EP085135

    Article  CAS  PubMed  Google Scholar 

  116. Lu KT, Wang YW, Yang JT, Yang YL, Chen HI (2005) Effect of interleukin-1 on traumatic brain injury-induced damage to hippocampal neurons. J Neurotrauma 22(8):885–895. https://doi.org/10.1089/neu.2005.22.885

    Article  PubMed  Google Scholar 

  117. Newell EA, Todd BP, Mahoney J, Pieper AA, Ferguson PJ, Bassuk AG (2018) Combined blockade of interleukin-1alpha and -1beta signaling protects mice from cognitive dysfunction after traumatic brain injury. eNeuro 5(2):ENEURO.0385. https://doi.org/10.1523/ENEURO.0385-17.2018

    Article  Google Scholar 

  118. Anderson GD, Peterson TC, Vonder Haar C, Kantor ED, Farin FM, Bammler TK, Macdonald JW, Hoane MR (2013) Comparison of the effects of erythropoietin and anakinra on functional recovery and gene expression in a traumatic brain injury model. Front Pharmacol 4:129. https://doi.org/10.3389/fphar.2013.00129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Sun M, Brady RD, Wright DK, Kim HA, Zhang SR, Sobey CG, Johnstone MR, O’Brien TJ, Semple BD, McDonald SJ, Shultz SR (2017) Treatment with an interleukin-1 receptor antagonist mitigates neuroinflammation and brain damage after polytrauma. Brain Behav Immun 66:359–371. https://doi.org/10.1016/j.bbi.2017.08.005

    Article  CAS  PubMed  Google Scholar 

  120. Emsley HC, Smith CJ, Georgiou RF, Vail A, Hopkins SJ, Rothwell NJ, Tyrrell PJ, Acute Stroke I (2005) A randomised phase II study of interleukin-1 receptor antagonist in acute stroke patients. J Neurol Neurosurg Psychiatry 76(10):1366–1372. https://doi.org/10.1136/jnnp.2004.054882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Helmy A, Guilfoyle MR, Carpenter KL, Pickard JD, Menon DK, Hutchinson PJ (2014) Recombinant human interleukin-1 receptor antagonist in severe traumatic brain injury: a phase II randomized control trial. J Cereb Blood Flow Metab 34(5):845–851. https://doi.org/10.1038/jcbfm.2014.23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Nadeau-Vallee M, Quiniou C, Palacios J, Hou X, Erfani A, Madaan A, Sanchez M, Leimert K, Boudreault A, Duhamel F, Rivera JC, Zhu T, Noueihed B, Robertson SA, Ni X, Olson DM, Lubell W, Girard S, Chemtob S (2015) Novel noncompetitive IL-1 receptor-biased ligand prevents infection- and inflammation-induced preterm birth. J Immunol 195(7):3402–3415. https://doi.org/10.4049/jimmunol.1500758

    Article  CAS  PubMed  Google Scholar 

  123. Quiniou C, Sapieha P, Lahaie I, Hou X, Brault S, Beauchamp M, Leduc M, Rihakova L, Joyal JS, Nadeau S, Heveker N, Lubell W, Sennlaub F, Gobeil F Jr, Miller G, Pshezhetsky AV, Chemtob S (2008) Development of a novel noncompetitive antagonist of IL-1 receptor. J Immunol 180(10):6977–6987. https://doi.org/10.4049/jimmunol.180.10.6977

    Article  CAS  PubMed  Google Scholar 

  124. Rivera JC, Sitaras N, Noueihed B, Hamel D, Madaan A, Zhou T, Honore JC, Quiniou C, Joyal JS, Hardy P, Sennlaub F, Lubell W, Chemtob S (2013) Microglia and interleukin-1beta in ischemic retinopathy elicit microvascular degeneration through neuronal semaphorin-3A. Arterioscler Thromb Vasc Biol 33(8):1881–1891. https://doi.org/10.1161/ATVBAHA.113.301331

    Article  CAS  PubMed  Google Scholar 

  125. Dabouz R, Cheng CWH, Abram P, Omri S, Cagnone G, Sawmy KV, Joyal JS, Desjarlais M, Olson D, Weil AG, Lubell W, Rivera JC, Chemtob S (2020) An allosteric interleukin-1 receptor modulator mitigates inflammation and photoreceptor toxicity in a model of retinal degeneration. J Neuroinflammation 17(1):359. https://doi.org/10.1186/s12974-020-02032-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

AW and SC originated the idea of the article.

SBT drafted the initial manuscript, performed the literature search, and revised the manuscript.

AW, SC, J-CR, and LBD assisted in the preparation of the manuscript, substantively revised the work, and approved the submitted version.

All authors have approved the final manuscript as submitted and agree to be personally accountable all aspects of the review.

Corresponding author

Correspondence to Alexander G Weil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

None

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourgeois-Tardif, S., De Beaumont, L., Rivera, J.C. et al. Role of innate inflammation in traumatic brain injury. Neurol Sci 42, 1287–1299 (2021). https://doi.org/10.1007/s10072-020-05002-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-05002-3

Keywords

Navigation