Associations of truncal body composition with cognitive status in patients with dementia

Abstract

Backgound

Central obesity in midlife is a risk factor of cognitive decline and dementia, and also one of the factors that make cognitive functions deteriorate rapidly.

Objective

The objective of this study is to investigate the relationship between truncal body composition (fat and muscle) and cognitive impairment in patients with dementia.

Methods

A total of 81 female over 60 years of age with probable Alzheimer’s disease were recruited between November 2014 and September 2015. The Mini-Mental State Examination, Global Deterioration Scale, and Clinical Dementia Rating Scale were used to assess the cognitive functions. Both truncal fat and muscle mass were measured using body dual-energy X-ray absorptiometry and used as a percentage of body weight (TMM% and TFM%). Correlations between truncal composition and cognitive status were assessed by simple correlation analysis, which was followed by partial correlation analysis with age and educational years.

Results

TFM% was not related to cognitive impairment. In contrast, TMM% had a significantly negative correlation with all three cognitive assessment scores. After further adjusting for age, educational years, and vascular factors, there was still a relationship between TMM% and cognitive functions.

Conclusions

Unlike truncal fat mass that showed no relevance with cognitive functions, the truncal muscle mass was negatively correlated with cognitive status. The truncal muscle mass is thought to affect cognitive status in dementia patients somehow.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Hou Q, Guan Y, Yu W, Liu X, Wu L, Xiao M, Lu Y (2019) Associations between obesity and cognitive impairment in the Chinese elderly: an observational study. Clin Interv Aging 14:367–373. https://doi.org/10.2147/CIA.S192050

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Luchsinger JA, Gustafson DR (2009) Adiposity and Alzheimer’s disease. Curr Opin Clin Nutr Metab Care 12(1):15–21. https://doi.org/10.1097/MCO.0b013e32831c8c71

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Cournot M, Marquie JC, Ansiau D, Martinaud C, Fonds H, Ferrieres J, Ruidavets JB (2006) Relation between body mass index and cognitive function in healthy middle-aged men and women. Neurology 67(7):1208–1214. https://doi.org/10.1212/01.wnl.0000238082.13860.50

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Whitmer RA, Gunderson EP, Barrett-Connor E, Quesenberry CP Jr, Yaffe K (2005) Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. BMJ 330(7504):1360. https://doi.org/10.1136/bmj.38446.466238.E0

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Pedditzi E, Peters R, Beckett N (2016) The risk of overweight/obesity in mid-life and late life for the development of dementia: a systematic review and meta-analysis of longitudinal studies. Age Ageing 45(1):14–21. https://doi.org/10.1093/ageing/afv151

    Article  PubMed  Google Scholar 

  6. 6.

    Hassing LB, Dahl AK, Thorvaldsson V, Berg S, Gatz M, Pedersen NL, Johansson B (2009) Overweight in midlife and risk of dementia: a 40-year follow-up study. Int J Obes 33(8):893–898. https://doi.org/10.1038/ijo.2009.104

    CAS  Article  Google Scholar 

  7. 7.

    Bagger YZ, Tanko LB, Alexandersen P, Qin G, Christiansen C (2004) The implications of body fat mass and fat distribution for cognitive function in elderly women. Obes Res 12(9):1519–1526. https://doi.org/10.1038/oby.2004.189

    Article  PubMed  Google Scholar 

  8. 8.

    Nourhashemi F, Andrieu S, Gillette-Guyonnet S, Reynish E, Albarede JL, Grandjean H, Vellas B (2002) Is there a relationship between fat-free soft tissue mass and low cognitive function? Results from a study of 7,105 women. J Am Geriatr Soc 50(11):1796–1801. https://doi.org/10.1046/j.1532-5415.2002.50507.x

    Article  PubMed  Google Scholar 

  9. 9.

    Buchman AS, Wilson RS, Bienias JL, Shah RC, Evans DA, Bennett DA (2005) Change in body mass index and risk of incident Alzheimer disease. Neurology 65(6):892–897. https://doi.org/10.1212/01.wnl.0000176061.33817.90

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Dahl AK, Lopponen M, Isoaho R, Berg S, Kivela SL (2008) Overweight and obesity in old age are not associated with greater dementia risk. J Am Geriatr Soc 56(12):2261–2266. https://doi.org/10.1111/j.1532-5415.2008.01958.x

    Article  PubMed  Google Scholar 

  11. 11.

    West NA, Haan MN (2009) Body adiposity in late life and risk of dementia or cognitive impairment in a longitudinal community-based study. J Gerontol A Biol Sci Med Sci 64(1):103–109. https://doi.org/10.1093/gerona/gln006

    Article  PubMed  Google Scholar 

  12. 12.

    Cronk BB, Johnson DK, Burns JM, Alzheimer's Disease Neuroimaging I (2010) Body mass index and cognitive decline in mild cognitive impairment. Alzheimer Dis Assoc Disord 24(2):126–130. https://doi.org/10.1097/WAD.0b013e3181a6bf3f

    Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Gustafson D, Rothenberg E, Blennow K, Steen B, Skoog I (2003) An 18-year follow-up of overweight and risk of Alzheimer disease. Arch Intern Med 163(13):1524–1528. https://doi.org/10.1001/archinte.163.13.1524

    Article  PubMed  Google Scholar 

  14. 14.

    Luchsinger JA, Patel B, Tang MX, Schupf N, Mayeux R (2007) Measures of adiposity and dementia risk in elderly persons. Arch Neurol 64(3):392–398. https://doi.org/10.1001/archneur.64.3.392

    Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Zamboni M, Armellini F, Harris T, Turcato E, Micciolo R, Bergamo-Andreis IA, Bosello O (1997) Effects of age on body fat distribution and cardiovascular risk factors in women. Am J Clin Nutr 66(1):111–115. https://doi.org/10.1093/ajcn/66.1.111

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Noel M, Reddy M (2005) Nutrition and aging. Prim Care 32(3):659–669. https://doi.org/10.1016/j.pop.2005.06.007

    Article  PubMed  Google Scholar 

  17. 17.

    Gurunathan U, Myles PS (2016) Limitations of body mass index as an obesity measure of perioperative risk. Br J Anaesth 116(3):319–321. https://doi.org/10.1093/bja/aev541

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Gallagher D, Visser M, Sepulveda D, Pierson RN, Harris T, Heymsfield SB (1996) How useful is body mass index for comparison of body fatness across age, sex, and ethnic groups? Am J Epidemiol 143(3):228–239. https://doi.org/10.1093/oxfordjournals.aje.a008733

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Yusuf S, Hawken S, Ounpuu S, Bautista L, Franzosi MG, Commerford P, Lang CC, Rumboldt Z, Onen CL, Lisheng L, Tanomsup S, Wangai P Jr, Razak F, Sharma AM, Anand SS, Investigators IS (2005) Obesity and the risk of myocardial infarction in 27,000 participants from 52 countries: a case-control study. Lancet 366(9497):1640–1649. https://doi.org/10.1016/S0140-6736(05)67663-5

    Article  PubMed  Google Scholar 

  20. 20.

    Burns JM, Johnson DK, Watts A, Swerdlow RH, Brooks WM (2010) Reduced lean mass in early Alzheimer disease and its association with brain atrophy. Arch Neurol 67(4):428–433. https://doi.org/10.1001/archneurol.2010.38

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Abellan van Kan G, Rolland Y, Gillette-Guyonnet S, Gardette V, Annweiler C, Beauchet O, Andrieu S, Vellas B (2012) Gait speed, body composition, and dementia. The EPIDOS-Toulouse cohort. J Gerontol A Biol Sci Med Sci 67(4):425–432. https://doi.org/10.1093/gerona/glr177

    Article  PubMed  Google Scholar 

  22. 22.

    Wirth R, Smoliner C, Sieber CC, Volkert D (2011) Cognitive function is associated with body composition and nutritional risk of geriatric patients. J Nutr Health Aging 15(8):706–710. https://doi.org/10.1007/s12603-011-0089-2

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Moon Y, Moon WJ, Kim JO, Kwon KJ, Han SH (2019) Muscle strength is independently related to brain atrophy in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 47(4–6):306–314. https://doi.org/10.1159/000500718

    Article  PubMed  Google Scholar 

  24. 24.

    Cromwell RL, Aadland-Monahan TK, Nelson AT, Stern-Sylvestre SM, Seder B (2001) Sagittal plane analysis of head, neck, and trunk kinematics and electromyographic activity during locomotion. J Orthop Sports Phys Ther 31(5):255–262. https://doi.org/10.2519/jospt.2001.31.5.255

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Lu B, Zhou J, Waring ME, Parker DR, Eaton CB (2010) Abdominal obesity and peripheral vascular disease in men and women: a comparison of waist-to-thigh ratio and waist circumference as measures of abdominal obesity. Atherosclerosis 208(1):253–257

    CAS  Article  Google Scholar 

  26. 26.

    Moon Y, Choi YJ, Kim JO, Han SH (2018) Muscle profile and cognition in patients with Alzheimer’s disease dementia. Neurol Sci 39(11):1861–1866. https://doi.org/10.1007/s10072-018-3505-0

    Article  PubMed  Google Scholar 

  27. 27.

    Kim J, Wang Z, Heymsfield SB, Baumgartner RN, Gallagher D (2002) Total-body skeletal muscle mass: estimation by a new dual-energy X-ray absorptiometry method. Am J Clin Nutr 76(2):378–383. https://doi.org/10.1093/ajcn/76.2.378

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Spauwen PJ, Murphy RA, Jonsson PV, Sigurdsson S, Garcia ME, Eiriksdottir G, van Boxtel MP, Lopez OL, Gudnason V, Harris TB, Launer LJ (2017) Associations of fat and muscle tissue with cognitive status in older adults: the AGES-Reykjavik study. Age Ageing 46(2):250–257. https://doi.org/10.1093/ageing/afw219

    Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Yaffe K, Lui LY, Grady D, Cauley J, Kramer J, Cummings SR (2000) Cognitive decline in women in relation to non-protein-bound oestradiol concentrations. Lancet 356(9231):708–712. https://doi.org/10.1016/S0140-6736(00)02628-3

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Campbell NL, Unverzagt F, LaMantia MA, Khan BA, Boustani MA (2013) Risk factors for the progression of mild cognitive impairment to dementia. Clin Geriatr Med 29(4):873–893. https://doi.org/10.1016/j.cger.2013.07.009

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Campbell NL, Boustani MA, Lane KA, Gao S, Hendrie H, Khan BA, Murrell JR, Unverzagt FW, Hake A, Smith-Gamble V, Hall K (2010) Use of anticholinergics and the risk of cognitive impairment in an African American population. Neurology 75(2):152–159. https://doi.org/10.1212/WNL.0b013e3181e7f2ab

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Schubert CC, Boustani M, Callahan CM, Perkins AJ, Carney CP, Fox C, Unverzagt F, Hui S, Hendrie HC (2006) Comorbidity profile of dementia patients in primary care: are they sicker? J Am Geriatr Soc 54(1):104–109. https://doi.org/10.1111/j.1532-5415.2005.00543.x

    Article  PubMed  Google Scholar 

  33. 33.

    Anstey KJ, Cherbuin N, Budge M, Young J (2011) Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev 12(5):e426–e437. https://doi.org/10.1111/j.1467-789X.2010.00825.x

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Buchman AS, Wilson RS, Boyle PA, Bienias JL, Bennett DA (2007) Grip strength and the risk of incident Alzheimer’s disease. Neuroepidemiology 29(1–2):66–73. https://doi.org/10.1159/000109498

    Article  PubMed  Google Scholar 

  35. 35.

    Nakamoto H, Yoshitake Y, Takai Y, Kanehisa H, Kitamura T, Kawanishi M, Mori S (2012) Knee extensor strength is associated with Mini-Mental State Examination scores in elderly men. Eur J Appl Physiol 112(5):1945–1953. https://doi.org/10.1007/s00421-011-2176-9

    Article  PubMed  Google Scholar 

  36. 36.

    Shin HY, Kim SW, Kim JM, Shin IS, Yoon JS (2012) Association of grip strength with dementia in a Korean older population. Int J Geriatr Psychiatry 27(5):500–505. https://doi.org/10.1002/gps.2742

    Article  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Brain Research Program of the National Research Foundation (NRF) funded by the Ministry of Science & ICT (NRF-2018M3C7A1056571).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yeonsil Moon.

Ethics declarations

Disclaimer

The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

Conflict of interest

None.

Ethical approval

All the patients provided written informed consent to the use of the data obtained in this study, and this study was approved through the Institutional Review Board of Konkuk University Medical Center (KUH1170159).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Kim, J.O., Kwon, K.J. et al. Associations of truncal body composition with cognitive status in patients with dementia. Neurol Sci 42, 209–214 (2021). https://doi.org/10.1007/s10072-020-04503-5

Download citation

Keywords

  • Cognitive dysfunction
  • Alzheimer disease
  • Dementia
  • Central obesity
  • Sarcopenia
  • Body composition