Skip to main content

Advertisement

Log in

Vis-à-vis: a focus on genetic features of cerebral cavernous malformations and brain arteriovenous malformations pathogenesis

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Cerebrovascular malformations include a wide range of blood vessel disorders affecting brain vasculature. Neuroimaging differential diagnosis can result unspecific due to similar phenotypes of lesions and their deep localization. Next-generation sequencing (NGS) platforms simultaneously analyze several hundreds of genes and can be applied for molecular distinction of different phenotypes within the same disorder’s macro-area. We discuss about the main criticisms regarding molecular bases of cerebral cavernous malformations (CCM) and brain arteriovenous malformations (AVM), highlighting both common pathogenic aspects and genetic differences leading to lesion development. Many recent studies performed on human CCM and AVM tissues aim to detect genetic markers to better understand molecular bases and pathogenic mechanism, particularly for sporadic cases. Several genes involved in angiogenesis show different expression patterns between CCM and AVM, and these could represent a valid starting point to project a NGS panel to apply for differential cerebrovascular malformation diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gault J, Sarin H, Awadallah NA, Shenkar R, Awad IA (2004) Pathobiology of human cerebrovascular malformations: basic mechanisms and clinical relevance. Neurosurgery 55:1–16

    PubMed  Google Scholar 

  2. Català A, Roé E, Vikkula M, Baselga E (2013) Capillary malformation-arteriovenous malformation syndrome: a report of 2 cases, diagnostic criteria, and management. Actas Dermosifiliogr 104:710–713

    Article  Google Scholar 

  3. Brugulat-Serrat A, Rojas S, Bargalló N, Conesa G, Minguillón C, Fauria K, Gramunt N, Molinuevo JL, Gispert JD (2017) Incidental findings on brain MRI of cognitively normal first-degree descendants of patients with Alzheimer’s disease: a cross-sectional analysis from the ALFA (Alzheimer and families) project. BMJ Open 7:e013215

    Article  Google Scholar 

  4. Scimone C, Bramanti P, Alafaci C, Granata F, Piva F, Rinaldi C, Donato L, Greco F, Sidoti A, D’Angelo R (2017) Update on novel CCM gene mutations in patients with cerebral cavernous malformations. J Mol Neurosci 61:189–198

    Article  CAS  Google Scholar 

  5. Spiegler S, Rath M, Paperlein C, Felbor U (2018) Cerebral cavernous malformations: an update on prevalence, molecular genetic analyses, and genetic counselling. Mol Syndromol 9:60–69

    Article  CAS  Google Scholar 

  6. Riant F, Bergametti F, Ayrignac X, Boulday G, Tournier-Lasserve E (2010) Recent insights into cerebral cavernous malformations: the molecular genetics of CCM. FEBS J 277:1070–1075

    Article  CAS  Google Scholar 

  7. Haasdijk RA, Cheng C, Maat-Kievit AJ, Duckers HJ (2012) Cerebral cavernous malformations: from molecular pathogenesis to genetic counselling and clinical management. Eur J Hum Genet 20:134–140

    Article  CAS  Google Scholar 

  8. Sirvente J, Enjolras O, Wassef M, Tournier-Lasserve E, Labauge P (2009) Frequency and phenotypes of cutaneous vascular malformations in a consecutive series of 417 patients with familial cerebral cavernous malformations. J Eur Acad Dermatol Venereol 23:1066–1072

    Article  CAS  Google Scholar 

  9. Shenkar R, Shi C, Rebeiz T, Stockton RA, McDonald DA, Mikati AG, Zhang L, Austin C, Akers AL, Gallione CJ, Rorrer A, Gunel M, Min W, De Souza JM, Lee C, Marchuk DA, Awad IA (2015) Exceptional aggressiveness of cerebral cavernous malformation disease associated with PDCD10 mutations. Genet Med 17:188–196

    Article  CAS  Google Scholar 

  10. Brinjikji W, El-Masri AE, Wald JT, Flemming KD, Lanzino G (2017) Prevalence of cerebral cavernous malformations associated with developmental venous anomalies increases with age. Childs Nerv Syst 33:1539–1543

    Article  Google Scholar 

  11. De Souza JM, Domingue RC, Cruz LC Jr, Domingues FS, Iasbeck T, Gasparetto EL (2008) Susceptibility-weighted imaging for the evaluation of patients with familial cerebral cavernous malformations: a comparison with t2-weighted fast spin-echo and gradient-echo sequences. AJNR Am J Neuroradiol 29:154–158

    Article  Google Scholar 

  12. Nagpal K, Prakash S (2018) An unusual presentation of superficial siderosis with focal dystonia and 'Giant panda morphology' on MRI: atypical clinicoradiological amalgam. Neurol Sci 1–4. https://doi.org/10.1007/s10072-018-3650-5

  13. Akers A, Al-Shahi Salman R, Awad IA, Dahlem K, Flemming K, Hart B, Kim H, Jusue-Torres I, Kondziolka D, Lee C, Morrison L, Rigamonti D, Rebeiz T, Tournier-Lasserve E, Waggoner D, Whitehead K (2017) Synopsis of guidelines for the clinical management of cerebral cavernous malformations: consensus recommendations based on systematic literature review by the angioma alliance scientific advisory board clinical experts panel. Neurosurgery 80:665–680

    Article  Google Scholar 

  14. Hauptman JS, Moftakhar P, Dadour A, Malkasian D, Martin NA (2010) Advances in the biology of cerebral cavernous malformations. SurgNeurolInt 1:63

    Google Scholar 

  15. Zawistowski JS, Serebriiskii IG, Lee MF, Golemis EA, Marchuk DA (2002) KRIT1 association with the integrin-binding protein ICAP-1: a new direction in the elucidation of cerebral cavernous malformations (CCM1) pathogenesis. Hum Mol Genet 11:389–396

    Article  CAS  Google Scholar 

  16. Faurobert E, Rome C, Lisowska J, Manet-Dupé S, Boulday G, Malbouyres M, Balland M, Bouin AP, Kéramidas M, Bouvard D, Coll JL, Ruggiero F, Tournier-Lasserve E, Albiges-Rizo C (2013) CCM1-ICAP-1 complex controls β1 integrin-dependent endothelial contractility and fibronectin remodelling. J Cell Biol 202:545–561

    Article  CAS  Google Scholar 

  17. Glading AJ, Ginsberg MH (2010) Rap1 and its effector KRIT1/CCM1 regulate beta-catenin signalling. Dis Model Mech 3:73–83

    Article  CAS  Google Scholar 

  18. Bravi L, Malinverno M, Pisati F, Rudini N, Cuttano R, Pallini R, Martini M, Larocca LM, Locatelli M, Levi V, Bertani GA, Dejana E, Lampugnani MG (2016) Endothelial cells lining sporadic cerebral cavernous malformation cavernomas under goendothelial-to-mesenchymal transition. Stroke 47:886–890

    Article  Google Scholar 

  19. Cuttano R, Rudini N, Bravi L, Corada M, Giampietro C, Papa E, Morini MF, Maddaluno L, Baeyens N, Adams RH, Jain MK, Owens GK, Schwartz M, Lampugnani MG, Dejana E (2016) KLF4 is a key determinant in the development and progression of cerebral cavernous malformations. EMBO Mol Med 8:6–24

    Article  CAS  Google Scholar 

  20. Schulz GB, Wieland E, Wüstehube-Lausch J, Boulday G, Moll I, Tournier-Lasserve E, Fischer A (2015) Cerebral cavernous Malformation-1 protein controls DLL4-Notch3 signaling between the endothelium and Pericytes. Stroke 46:1337–1343

    Article  CAS  Google Scholar 

  21. Draheim KM, Fisher OS, Boggon TJ, Calderwood DA (2014) Cerebral cavernous malformation proteins at a glance. J Cell Sci 127:701–707

    Article  CAS  Google Scholar 

  22. Fisher OS, Zhang R, Li X, Murphy JW, Demeler B, Boggon TJ (2013) Structural studies of cerebral cavernous malformations 2 (CCM2) reveal a folded helical domain at its C-terminus. FEBS Lett 587:272–277

    Article  CAS  Google Scholar 

  23. Fong B, Watson PH, Watson AJ (2007) Mouse preimplantation embryo responses to culture medium osmolarity include increased expression of CCM2 and p38 MAPK activation. BMC Dev Biol 7:2

    Article  Google Scholar 

  24. Crose LE, Hilder TL, Sciaky N, Johnson GL (2009) Cerebral cavernous malformation 2 protein promotes smad ubiquitin regulatory factor 1-mediated RhoA degradation in endothelial cells. J Biol Chem 284:13301–13305

    Article  CAS  Google Scholar 

  25. Miura K, Nojiri T, Akitake Y, Ando K, Fukuhara S, Zenitani M, Kimura T, Hino J, Miyazato M, Hosoda H, Kangawa K (2017) CCM2 and PAK4 act downstream of atrial natriuretic peptide signaling to promote cell spreading. Biochem J 474:1897–1918

    Article  CAS  Google Scholar 

  26. Rosen JN, Sogah VM, Ye LY, Mably JD (2013) Ccm2-like is required for cardiovascular development as a novel component of the Heg-CCM pathway. Dev Biol 76:74–85

    Article  Google Scholar 

  27. Chen L, Tanriover G, Yano H, Friedlander R, Louvi A, Gunel M (2009) Apoptotic functions of PDCD10/CCM3, the gene mutated in cerebral cavernous malformation 3. Stroke 40:1474–1481

    Article  Google Scholar 

  28. Li X, Zhang R, Zhang H, He Y, Ji W, Min W, Boggon TJ (2010) Crystal structure of CCM3, a cerebral cavernous malformation protein critical for vascular integrity. J Biol Chem 285:24099–24107

    Article  CAS  Google Scholar 

  29. Schleider E, Stahl S, Wüstehube J, Walter U, Fischer A, Felbor U (2011) Evidence for anti-angiogenic and pro-survival functions of the cerebral cavernous malformation protein 3. Neurogenetics 12:83–86

    Article  CAS  Google Scholar 

  30. Jenny Zhou H, Qin L, Zhang H, Tang W, Ji W, He Y, Liang X, Wang Z, Yuan Q, Vortmeyer A, Toomre D, Fuh G, Yan M, Kluger MS, Wu D, Min W (2016) Endothelial exocytosis of angiopoietin-2 resulting from CCM3 deficiency contributes to cerebral cavernous malformation. Nat Med 22:1033–1042

    Article  Google Scholar 

  31. Louvi A, Chen L, Two AM, Zhang H, Min W, Günel M (2011) Loss of cerebral cavernous malformation 3 (Ccm3) in neuroglia leads to CCM and vascular pathology. Proc Natl Acad Sci U S A 108:3737–3742

    Article  CAS  Google Scholar 

  32. Jung KH, Han DM, Jeong SG, Choi MR, Chai YG, Cho GW (2015) Proteomic analysis reveals KRIT1 as a modulator for the antioxidant effects of valproic acid in human bone-marrow mesenchymal stromal cells. Drug Chem Toxicol 38:286–292

    Article  CAS  Google Scholar 

  33. Goudreault M, D'Ambrosio LM, Kean MJ, Mullin MJ, Larsen BG, Sanchez A, Chaudhry S, Chen GI, Sicheri F, Nesvizhskii AI, Aebersold R, Raught B, Gingras AC (2009) A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol Cell Proteomics 8:157–171

    Article  CAS  Google Scholar 

  34. D'Angelo R, Marini V, Rinaldi C, Origone P, Dorcaratto A, Avolio M, Goitre L, Forni M, Capra V, Alafaci C, Mareni C, Garrè C, Bramanti P, Sidoti A, Retta SF, Amato A (2011) Mutation analysis of CCM1, CCM2 and CCM3 genes in a cohort of Italian patients with cerebral cavernous malformation. Brain Pathol 21:360

    Article  Google Scholar 

  35. Scimone C, Bramanti P, Ruggeri A, Donato L, Alafaci C, Crisafulli C, Mucciardi M, Rinaldi C, Sidoti A, D'Angelo R (2016) CCM3/SERPINI1 bidirectional promoter variants in patients with cerebral cavernous malformations: a molecular and functional study. BMC Med Genet 17:74

    Article  Google Scholar 

  36. Kar S, Samii A, Bertalanffy H (2015) PTEN/PI3K/Akt/VEGF signaling and the cross talk to KRIT1, CCM2, and PDCD10 proteins in cerebral cavernous malformations. Neurosurg Rev 38:229–236

    Article  Google Scholar 

  37. Altas M, Bayrak OF, Cerci A, Isik N, Celik M, Culha M, Sahin F, Elmaci I (2010) Angiotensin-converting enzyme insertion/deletion gene polymorphism in patients with familial multiple cerebral cavernous malformations. J Clin Neurosci 17:1034–1037

    Article  CAS  Google Scholar 

  38. Zhu Y, Wu Q, Fass M, Xu JF, You C, Müller O, , Sandalcioglu IE, Zhang JM, Sure U (2011) In vitro characterization of the angiogenic phenotype and genotype of the endothelia derived from sporadic cerebral cavernous malformations. Neurosurgery 69:722–732

    Article  Google Scholar 

  39. Chen IH, Lin YH, Wu MN, Lai CL, Liou LM (2018) Cerebral arteriovenous malformation presenting as isolated bilateral pupil-sparing oculomotor, pseudoabducens palsy, and hemiataxia. NeurolSci 39:1289–1290

    Google Scholar 

  40. Zhang R, Zhu W, Su H (2016) Vascular integrity in the pathogenesis of brain arteriovenous malformation. ActaNeurochirSuppl 121:29–35

    Google Scholar 

  41. Thomas JM, Surendran S, Abraham M, Rajavelu A, Kartha CC (2016) Genetic and epigenetic mechanisms in the development of arteriovenous malformations in the brain. Clin Epigenetics 8:78

    Article  Google Scholar 

  42. Brinjikji W, Iyer VN, Wood CP, Lanzino G (2017) Prevalence and characteristics of brain arteriovenous malformations in hereditary hemorrhagic telangiectasia: a systematic review and meta-analysis. J Neurosurg 127:302–310

    Article  Google Scholar 

  43. Shovlin CL, Guttmacher AE, Buscarini E, Faughnan ME, Hyland RH, Westermann CJ, Kjeldsen AD, Plauchu H (2000) Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu-Osler-Weber syndrome). Am J Med Genet 91:66–67

    Article  CAS  Google Scholar 

  44. van Beijnum J, van der Worp HB, Schippers HM, van Nieuwenhuizen O, Kappelle LJ, Rinkel GJ, Berkelbach van der Sprenkel JW, Klijn CJ (2007) Familial occurrence of brain arteriovenous malformations: a systematic review. J Neurol Neurosurg Psychiatry 78:1213–1217

    Article  Google Scholar 

  45. Komiyama M (2016) Pathogenesis of brain arteriovenous malformations. Neurol Med Chir (Tokyo) 56:317–325

    Article  Google Scholar 

  46. Shi S, Sun J, Meng Q, Yu Y, Huang H, Ma T, Yang Z, Liu X, Yang J, Shen Z (2018) Sonic hedgehog promotes endothelial differentiation of bone marrow mesenchymal stem cells via VEGF-D. J Thorac Dis 10:5476–5488

    Article  Google Scholar 

  47. Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, Campos-Ortega JA, Weinstein BM (2001) Notch signaling is required for arterial-venous differentiation during embryonic vascular development. Development 128:3675–3683

    CAS  PubMed  Google Scholar 

  48. Hashimoto T, Wu Y, Lawton MT, Yang GY, Barbaro NM, Young WL (2005) Co-expression of angiogenic factors in brain arteriovenous malformations. Neurosurgery 56:1058–1065

    PubMed  Google Scholar 

  49. Hashimoto T, Wen G, Lawton MT, Boudreau NJ, Bollen AW, Yang GY, Barbaro NM, Higashida RT, Dowd CF, Halbach VV, Young WL, University of California, San Francisco BAVM Study Group (2003) Abnormal expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in brain arteriovenous malformations. Stroke 34:925–9231

    Article  CAS  Google Scholar 

  50. Mouchtouris N, Jabbour PM, Starke RM, Hasan DM, Zanaty M, Theofanis T, Ding D, Tjoumakaris SI, Dumont AS, Ghobrial GM, Kung D, Rosenwasser RH, Chalouhi N (2015) Biology of cerebral arteriovenous malformations with a focus on inflammation. J Cereb Blood Flow Metab 35:167–175

    Article  CAS  Google Scholar 

  51. Ng I, Tan WL, Ng PY, Lim J (2005) Hypoxia inducible factor-1alpha and expression of vascular endothelial growth factor and its receptors in cerebral arteriovenous malformations. J Clin Neurosci 12:794–799

    Article  CAS  Google Scholar 

  52. McDonald J, Wooderchak-Donahue W, VanSant Webb C, Whitehead K, Stevenson DA, Bayrak-Toydemir P (2015) Hereditary hemorrhagic telangiectasia: genetics and molecular diagnostics in a new era. Front Genet 6:1

    Article  Google Scholar 

  53. Blanco FJ, Santibanez JF, Guerrero-Esteo M, Langa C, Vary CP, Bernabeu C (2005) Interaction and functional interplay between endoglin and ALK-1, two components of the endothelial transforming growth factor-beta receptor complex. J Cell Physiol 204:574–584

    Article  CAS  Google Scholar 

  54. Tillet E, Bailly S (2015) Emerging roles of BMP9 and BMP10 in hereditary hemorrhagic telangiectasia. Front Genet 5:456

    Article  Google Scholar 

  55. Yılmaz B, Toktaş ZO, Akakın A, Işık S, Bilguvar K, Kılıç T, Günel M (2017) Familial occurrence of brain arteriovenous malformation: a novel ACVRL1 mutation detected by whole exome sequencing. J Neurosurg 126:1879–1883

    PubMed  Google Scholar 

  56. Yu J, Streicher JL, Medne L, Krantz ID, Yan AC (2017) EPHB4 mutation implicated in capillary malformation-arteriovenous malformation syndrome: a case report. PediatrDermatol 34:e227–e230

    Google Scholar 

  57. Lapinski PE, Doosti A, Salato V, North P, Burrows PE, King PD (2017) Somatic second hit mutation of RASA1 in vascular endothelial cells in capillary malformation-arteriovenous malformation. Eur J Med Genet S1769–7212:30256–30262

    Google Scholar 

  58. Luissint AC, Artus C, Glacial F, Ganeshamoorthy K, Couraud PO (2012) Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS 9:23

    Article  Google Scholar 

  59. Uranishi R, Baev NI, Kim JH, Awad IA (2001) Vascular smooth muscle cell differentiation in human cerebral vascular malformations. Neurosurgery 49:671–679

    CAS  PubMed  Google Scholar 

  60. Yildirim O, Bicer A, Ozkan A, Kurtkaya O, Cirakoglu B, Kilic T (2010) Expression of platelet-derived growth factor ligand and receptor in cerebral arteriovenous and cavernous malformations. J Clin Neurosci 17:1557–1562

    Article  CAS  Google Scholar 

  61. Seker A, Yildirim O, Kurtkaya O, Sav A, Günel M, Pamir NM, Kiliç T (2006) Expression of integrins in cerebral arteriovenous and cavernous malformations. Neurosurgery 58:159–168

    Article  Google Scholar 

  62. Choquet H, Pawlikowska L, Nelson J, CE MC, Akers A, Baca B, Khan Y, Hart B, Morrison L, Kim H, Brain Vascular Malformation Consortium (BVMC) Study (2014) Polymorphisms in inflammatory and immune response genes associated with cerebral cavernous malformation type 1 severity. Cerebrovasc Dis 38:433–440

    Article  CAS  Google Scholar 

  63. Kamiyama H, Nishimura S, Kaimori M, Watanabe M, Furuno Y, Saito A, Nishijima M (2010) Cavernous angioma associated with arteriovenous malformation of the brain. Neurol Med 50:131–134

    Article  Google Scholar 

  64. Awad IA, Robinson JR Jr, Mohanty S, Estes ML (1993) Mixed vascular malformations of the brain: clinical and pathogenetic considerations. Neurosurgery 33:179-188

    Article  Google Scholar 

  65. Gan D, Li M, Wu J, Sun X, Tian G (2017) Analysis of genetic mutations in a cohort of hereditary optic neuropathy in Shanghai, China. J Ophthalmol 2017:6186052

    PubMed  PubMed Central  Google Scholar 

  66. Bendjilali N, Kim H, Weinsheimer S, Guo DE, Kwok PY, Zaroff JG, Sidney S, Lawton MT, McCulloch CE, Koeleman BP, Klijn CJ, Young WL, Pawlikowska L (2013) A genome-wide investigation of copy number variation in patients with sporadic brain arteriovenous malformation. PLoS One 8:e71434

    Article  CAS  Google Scholar 

  67. Ellingford JM, Horn B, Campbell C, Arno G, Barton S, Tate C, Bhaskar S, Sergouniotis PI, Taylor RL, Carss KJ, Raymond LFL, Michaelides M, Ramsden SC, Webster AR, Black GCM (2018) Assessment of the incorporation of CNV surveillance into gene panel next-generation sequencing testing for inherited retinal diseases. J Med Genet 55:114–121

    Article  Google Scholar 

  68. Gawlik KI (2018) At the crossroads of clinical and preclinical research for muscular dystrophy-are we closer to effective treatment for patients? Int J MolSci 19:E1490

    Article  Google Scholar 

  69. D'Angelo R, Scimone C, Rinaldi C, Trimarchi G, Italiano D, Bramanti P, Amato A, Sidoti A (2012) CCM2 gene polymorphisms in Italian sporadic patients with cerebral cavernous malformation: a case-control study. Int J Mol Med 29:1113–1120

    CAS  PubMed  Google Scholar 

  70. Rinaldi C, Bramanti P, Scimone C, Donato L, Alafaci C, D'Angelo R, Sidoti A (2017) Relevance of CCM gene polymorphisms for clinical management of sporadic cerebral cavernous malformations. J Neurol Sci 380:31–37

    Article  CAS  Google Scholar 

  71. Ge M, Du C, Li Z, Liu Y, Xu S, Zhang L, Pang Q (2017) Association of ACVRL1 genetic polymorphisms with arteriovenous malformations: a case-control study and meta-analysis. World Neurosurg 108:690–697

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalia D’Angelo.

Ethics declarations

The author declares that the manuscript has not been submitted to more than one journal for simultaneous consideration and has not been published previously.

All the authors read and approved the final version of the manuscript.

Human and animal rights

The manuscript is a collection of literature data and does not involve animals or human participants.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Scimone, C., Donato, L., Marino, S. et al. Vis-à-vis: a focus on genetic features of cerebral cavernous malformations and brain arteriovenous malformations pathogenesis. Neurol Sci 40, 243–251 (2019). https://doi.org/10.1007/s10072-018-3674-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-018-3674-x

Keywords

Navigation