Neurological Sciences

, Volume 39, Issue 4, pp 717–724 | Cite as

Whole-exome sequencing reveals a rare interferon gamma receptor 1 mutation associated with myasthenia gravis

  • Guoyan Qi
  • Peng Liu
  • Shanshan Gu
  • Hongxia Yang
  • Huimin Dong
  • Yinping Xue
Original Article


Our study is aimed to explore the underlying genetic basis of myasthenia gravis. We collected a Chinese pedigree with myasthenia gravis, and whole-exome sequencing was performed on the two affected siblings and their parents. The candidate pathogenic gene was identified by bioinformatics filtering, which was further verified by Sanger sequencing. The homozygous mutation c.G40A (p.V14M) in interferon gamma receptor 1was identified. Moreover, the mutation was also detected in 3 cases of 44 sporadic myasthenia gravis patients. The p.V14M substitution in interferon gamma receptor 1 may affect the signal peptide function and the translocation on cell membrane, which could disrupt the binding of the ligand of interferon gamma and antibody production, contributing to myasthenia gravis susceptibility. We discovered that a rare variant c.G40A in interferon gamma receptor 1 potentially contributes to the myasthenia gravis pathogenesis. Further functional studies are needed to confirm the effect of the interferon gamma receptor 1 on the myasthenia gravis phenotype.


Myasthenia gravis Autoimmune disease Whole-exome sequencing Interferon gamma receptor 1 Pathologenesis 


Funding information

This work was supported by the Shijiazhuang Science and Technology Bureau Foundation (No. 131460613), Science and Technology Agency Foundation of Hebei Province (No. 14277758D), Natural Science Foundation of Hebei Province (No. H2015106020), and Key Project of Hebei Provincial Administration of Traditional Chinese Medicine (No. 2014221).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Research involving human participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

10072_2018_3275_MOESM1_ESM.docx (16 kb)
ESM 1 (DOCX 16 kb).


  1. 1.
    Verschuuren JJ, Palace J, Gilhus NE (2010) Clinical aspects of myasthenia explained. Autoimmunity 43(5–6):344–352. CrossRefPubMedGoogle Scholar
  2. 2.
    Vincent A, Palace J, Hilton-Jones D (2001) Myasthenia gravis. Lancet 357(9274):2122–2128. CrossRefPubMedGoogle Scholar
  3. 3.
    Micieli G, De Falco FA, Consoli D, Inzitari D, Sterzi R, Tedeschi G, Toni D (2012) The role of emergency neurology in Italy: outcome of a consensus meeting for a intersociety position. Neurol Sci 33(2):297–304. CrossRefPubMedGoogle Scholar
  4. 4.
    Jack KL, Koopman WJ, Hulley D, Nicolle MW (2016) A review of azathioprine-associated hepatotoxicity and myelosuppression in myasthenia gravis. J Clin Neuromuscul Dis 18(1):12–20. CrossRefPubMedGoogle Scholar
  5. 5.
    Tola MR, Caniatti LM, Casetta I, Granieri E, Conighi C, Quatrale R, Monetti VC, Paolino E, Govoni V, Pascarella R et al (1994) Immunogenetic heterogeneity and associated autoimmune disorders in myasthenia gravis: a population-based survey in the province of Ferrara, northern Italy. Acta Neurol Scand 90(5):318–323CrossRefPubMedGoogle Scholar
  6. 6.
    Celesia GG (1965) Myasthenia gravis in two siblings. Arch Neurol 12(2):206–210. CrossRefPubMedGoogle Scholar
  7. 7.
    Osserman KE, Teng P (1956) Studies in myasthenia gravis: neonatal and juvenile types. J Mount Sinai Hospital, New York 23(5):711–727Google Scholar
  8. 8.
    Foldes FF, Mc NP (1960) Unusual familial occurrence of myasthenia gravis. JAMA 174(4):418–420. CrossRefPubMedGoogle Scholar
  9. 9.
    Herrmann C Jr (1966) Myasthenia gravis occurring in families. Neurology 16(1):75–85. CrossRefPubMedGoogle Scholar
  10. 10.
    Thomas (1961) Current status of the epidemiology and genetics of myasthenia gravis. Proceedings of the Myasthenia gravis Proc 2nd Int Symp, SpringfieldGoogle Scholar
  11. 11.
    Pirskanen R (1977) Genetic aspects in myasthenia gravis. A family study of 264 Finnish patients. Acta Neurol Scand 56(5):365–388CrossRefPubMedGoogle Scholar
  12. 12.
    Provenzano C, Arancio O, Evoli A, Rocca B, Bartoccioni E, de Grandis D, Tonali P (1988) Familial autoimmune myasthenia gravis with different pathogenetic antibodies. J Neurol Neurosurg Psychiatry 51(9):1228–1230. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Bergoffen J, Zmijewski CM, Fischbeck KH (1994) Familial autoimmune myasthenia gravis. Neurology 44(3 Pt 1):551–554. CrossRefPubMedGoogle Scholar
  14. 14.
    Brueton L, Huson S, Thompson E, Vincent A, Hawke S, Price J, et al (eds) (1994) Myasthenia-gravis-an important cause of the Pena-Shokeir phenotype. J Med Genet. British Med Journal Publ Group British Med Assoc House, Tavistock Square, LondonGoogle Scholar
  15. 15.
    Croxen R, Vincent A, Newsom-Davis J, Beeson D (2002) Myasthenia gravis in a woman with congenital AChR deficiency due to epsilon-subunit mutations. Neurology 58(10):1563–1565. CrossRefPubMedGoogle Scholar
  16. 16.
    Feferman T, Maiti PK, Berrih-Aknin S, Bismuth J, Bidault J, Fuchs S, Souroujon MC (2005) Overexpression of IFN-induced protein 10 and its receptor CXCR3 in myasthenia gravis. J Immunol (Baltimore, Md : 1950) 174(9):5324–5331. CrossRefGoogle Scholar
  17. 17.
    Giraud M, Taubert R, Vandiedonck C, Ke X, Levi-Strauss M, Pagani F, Baralle FE, Eymard B, Tranchant C, Gajdos P, Vincent A, Willcox N, Beeson D, Kyewski B, Garchon HJ (2007) An IRF8-binding promoter variant and AIRE control CHRNA1 promiscuous expression in thymus. Nature 448(7156):934–937. CrossRefPubMedGoogle Scholar
  18. 18.
    Maselli RA, Arredondo J, Nguyen J, Lara M, Ng F, Ngo M, Pham JM, Yi Q, Stajich JM, McDonald K, Hauser MA, Wollmann RL (2014) Exome sequencing detection of two untranslated GFPT1 mutations in a family with limb-girdle myasthenia. Clin Genet 85(2):166–171. CrossRefPubMedGoogle Scholar
  19. 19.
    Bamshad MJ, Ng SB, Bigham AW, Tabor HK, Emond MJ, Nickerson DA, Shendure J (2011) Exome sequencing as a tool for Mendelian disease gene discovery. Nat Rev Genet 12(11):745–755. CrossRefPubMedGoogle Scholar
  20. 20.
    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25(14):1754–1760. CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Cibulskis K, Lawrence MS, Carter SL, Sivachenko A, Jaffe D, Sougnez C, Gabriel S, Meyerson M, Lander ES, Getz G (2013) Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat Biotechnol 31(3):213–219. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38(16):e164. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kumar P, Henikoff S, Ng PC (2009) Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 4(7):1073–1081. CrossRefPubMedGoogle Scholar
  25. 25.
    Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR (2010) A method and server for predicting damaging missense mutations. Nat Methods 7(4):248–249. CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Schwarz JM, Cooper DN, Schuelke M, Seelow D (2014) MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods 11(4):361–362. CrossRefPubMedGoogle Scholar
  27. 27.
    Chun S, Fay JC (2009) Identification of deleterious mutations within three human genomes. Genome Res 19(9):1553–1561. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Krawetz SA (2000) Bioinformatics methods and protocols. Humana Press, New YorkGoogle Scholar
  29. 29.
    Wang HB, Shi FD, Li H, van der Meide PH, Ljunggren HG, Link H (2000) Role for interferon-gamma in rat strains with different susceptibility to experimental autoimmune myasthenia gravis. Clin Immunol (Orlando, Fla) 95(2):156–162. CrossRefGoogle Scholar
  30. 30.
    Faber-Elmann A, Grabovsky V, Dayan M, Sela M, Alon R, Mozes E (2000) Cytokine profile and T cell adhesiveness to endothelial selectins: in vivo induction by a myasthenogenic T cell epitope and immunomodulation by a dual altered peptide ligand. Int Immunol 12(12):1651–1658. CrossRefPubMedGoogle Scholar
  31. 31.
    Huang WX, Huang P, Fredrikson S, Pirskanen R, Hillert J (2000) Decreased mRNA expression of TNF-alpha and IL-10 in non-stimulated peripheral blood mononuclear cells in myasthenia gravis. Eur J Neurol 7(2):195–202. CrossRefPubMedGoogle Scholar
  32. 32.
    Sakatsume M, Igarashi K, Winestock KD, Garotta G, Larner AC, Finbloom DS (1995) The Jak kinases differentially associate with the alpha and beta (accessory factor) chains of the interferon gamma receptor to form a functional receptor unit capable of activating STAT transcription factors. J Biol Chem 270(29):17528–17534. CrossRefPubMedGoogle Scholar
  33. 33.
    Farrar MA, Fernandez-Luna J, Schreiber RD (1991) Identification of two regions within the cytoplasmic domain of the human interferon-gamma receptor required for function. J Biol Chem 266(29):19626–19635PubMedGoogle Scholar
  34. 34.
    Yilmaz V, Tutuncu Y, Baris Hasbal N, Parman Y, Serdaroglu P, Deymeer F, Saruhan-Direskeneli G (2007) Polymorphisms of interferon-gamma, interleukin-10, and interleukin-12 genes in myasthenia gravis. Hum Immunol 68(6):544–549. CrossRefPubMedGoogle Scholar
  35. 35.
    Walter MR, Windsor WT, Nagabhushan TL, Lundell DJ, Lunn CA, Zauodny PJ, Narula SK (1995) Crystal structure of a complex between interferon-gamma and its soluble high-affinity receptor. Nature 376(6537):230–235. CrossRefPubMedGoogle Scholar
  36. 36.
    Bright JJ (2007) Curcumin and autoimmune disease. Adv Exp Med Biol 595:425–451. CrossRefPubMedGoogle Scholar
  37. 37.
    Kotenko SV, Izotova LS, Pollack BP, Mariano TM, Donnelly RJ, Muthukumaran G, Cook JR, Garotta G, Silvennoinen O, Ihle JN, Pestka S (1995) Interaction between the components of the interferon gamma receptor complex. J Biol Chem 270(36):20915–20921. CrossRefPubMedGoogle Scholar
  38. 38.
    Balasa B, Deng C, Lee J, Bradley LM, Dalton DK, Christadoss P, Sarvetnick N (1997) Interferon gamma (IFN-gamma) is necessary for the genesis of acetylcholine receptor-induced clinical experimental autoimmune myasthenia gravis in mice. J Exp Med 186(3):385–391. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Zhang GX, Navikas V, Link H (1997) Cytokines and the pathogenesis of myasthenia gravis. Muscle Nerve 20(5):543–551.<543::AID-MUS2>3.0.CO;2-9 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center of Treatment of Myasthenia Gravis Hebei ProvinceFirst Hospital of ShijiazhuangShijiazhuangChina

Personalised recommendations