Skip to main content

Advertisement

Log in

Biochemistry of primary headaches: role of tyrosine and tryptophan metabolism

  • MIGRAINE - NEWS IN PATHOPHYSIOLOGY
  • Published:
Neurological Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 24 December 2015

Abstract

The pathogenesis of migraine as well as cluster headache (CH) is yet a debated question. In this review, we discuss the possible role of the of tyrosine and tryptophan metabolism in the pathogenesis of these primary headaches. These include the abnormalities in the synthesis of neurotransmitters: high level of DA, low level of NE and very elevated levels of octopamine and synephrine (neuromodulators) in plasma of episodic migraine without aura and CH patients. We hypothesize that the imbalance between the levels of neurotransmitters and elusive amines synthesis is due to a metabolic shift directing tyrosine toward an increased decarboxylase and reduced hydroxylase enzyme activities. The metabolic shift of the tyrosine is favored by a state of neuronal hyperexcitability and a reduced mitochondrial activity present in migraine. In addition we present biochemical studies performed in chronic migraine and chronic tension-type headache patients to verify if the same anomalies of the tyrosine and tryptophan metabolism are present in these primary headaches and, if so, their possible role in the chronicity process of CM and CTTH. The results show that important abnormalities of tyrosine metabolism are present only in CM patients (very high plasma levels of DA, NE and tryptamine). Tryptamine plasma levels were found significantly lower in both CM and CTTH patients. In view of this, we propose that migraine and, possibly, CH attacks derive from neurotransmitter and neuromodulator metabolic abnormalities in a hyperexcitable and hypoenergetic brain that spread from the frontal lobe, downstream, resulting in abnormally activated nuclei of the pain matrix. The low tryptamine plasma levels found in CM and CTTH patients suggest that these two primary chronic headaches are characterized by a common insufficient serotoninergic control of the pain threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Headache Classification Committee of the International Headache Society (IHS) (2013) The international classification of headache disorders, 3 edition (beta version). Cephalagia 33(9):627–808

  2. Welch KMA (1987) Migraine a biobehavioral disorder. Arch Neurol 44:323–327

    Article  PubMed  CAS  Google Scholar 

  3. D’Andrea G, Leon A (2010) Pathogenesis of migraine: from neurotransmitters to neuromodulators and beyond. Neurol Sci Suppl 1:S1–S7

    Article  Google Scholar 

  4. D’Andrea G, Cananzi AR, Ferro Milone F, Joseph R, Grunfeld S, Welch KMA (1989) Platelet levels of glutamate and aspartate in normal subjects. Stroke 20(2):299–300

    PubMed  Google Scholar 

  5. Millan MJ (2002) Descending control of pain. Prog Neurobiol 66:355–474

    Article  PubMed  CAS  Google Scholar 

  6. D’Andrea G, Nordera GP, Perini F, Allais G, Granella F (2007) Biochemistry of neuro-modulation in primary headaches: focus on tyrosine metabolism. Neurol Sci 28 (Suppl) 2:S94–S96

    Article  Google Scholar 

  7. D’Andrea G, Terrazzino S, Fortin D, Cocco P, Balbi T (2003) Elusive amines and primary headaches: historical background and prospectives. Neurol Sci 24:S65–S67

    PubMed  Google Scholar 

  8. Axelrod J, Saavedra JM (1977) Octopamine. Nature 265:501–504

    Article  PubMed  CAS  Google Scholar 

  9. Cananzi AR, D’Andrea G, Perini F, Zamberaln F, Welch KMA (1995) Platelet plasma levels of glutamate and glutamine in migraine with and without aura. Cephalalgia 15(2):132–135

    Article  PubMed  CAS  Google Scholar 

  10. Welch KMA, D’Andrea G, Tepley N, Barkley G, Ramadan NM (1990) The concept of migraine as a state of central neuronal hyperexcitability. Neurol Clin 8:817–828

    PubMed  CAS  Google Scholar 

  11. Cao Y, Welch KMA, Aurora S, Vikinsgtad EM (1999) Functional MRI-BOLD of visual triggered headache in patients with migraine. Arch Neurol 56:548–554

    Article  PubMed  CAS  Google Scholar 

  12. Van Gelder N (1987) Calcium mobility and release associated with EEG abnormalities, migraine and epilepsy. Butterworths, Boston, pp 367–378

    Google Scholar 

  13. Prescot A, Becerra L, Pendse G, Shannon T et al (2009) Excitatory neurotransmitters in brain regions in interictal migraine patients. Mol Pain 5–34:1–11

    Google Scholar 

  14. Dela Aleja G, Ramos A, Mato-Abado A, Martinez-Salio A et al (2012) Higher glutamate to glutamine ratios in occipital regions in women with migraine during interictal state. Headache 53(2):365–375

    Article  Google Scholar 

  15. Aurora SK, Ahmad BK, Welch KM, Bhardhwaj P, Ramadan NM (1998) Transcranial magnetic stimulation confirms hyperexcitability of occipital cortex in migraine. Neurology 50(4):1111–1114

    Article  PubMed  CAS  Google Scholar 

  16. Khedr EM, Ahmed MA, Mohamed KA (2006) Motor and visual cortical excitability in migraineurs patients with and without aura: trnscranial magnetic stimulation. Neurophysiol Clin 36(1):13–18

    Article  PubMed  Google Scholar 

  17. Ramadan NM, Halvorson H, Vande-Linde A, Levine SR, Helpern JA, Welch KM (1989) Low brain magnesium and migraine. Headache 29(7):416–419

    Article  PubMed  CAS  Google Scholar 

  18. Van Harreveld A (1984) The nature of chick’s magnesium sensitive retinal spreading depression. J Neurobiol 15:333–334

    Article  PubMed  Google Scholar 

  19. Lees G, Leach MJ (1993) Studies on the mechanism of action of novel anticonvulsant lamotrigine (lamictal) using primary neuroglia cultures from rat cortex. Brain Res 612:190–199

    Article  PubMed  CAS  Google Scholar 

  20. D’Andrea G, Granella F, Cadaldini M, Manzoni GC (1999) Effectiveness of lamotrigine in the prophylaxis. Cephalalgia 19:64–66

    Article  PubMed  Google Scholar 

  21. Lampl C, Buzath A, Klinger D, Neumann K (1999) Lamotrigine in the prophylactic treatment of migraine with aura: a pilot study. Cephalalgia 19:58–63

    Article  PubMed  CAS  Google Scholar 

  22. Chen WT, Fuh JL, Wang SJ (2001) Persistent migrainous visual phenomena might be responsive to lamotrigine. Headache 41(8):823–825

    Article  PubMed  CAS  Google Scholar 

  23. Lampl C, Katsarava Z, Diener HC, Limmroth V (2005) Lamotrigine reduces migraine aura e migraine attacks in patients with migraine with aura. J Neurol Neurosurg Psychiatry 76(12):1730–1732

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. D’Andrea G, Nordera GP, Allais G (2006) Treatment of the aura: solving the puzzle. Neurol Sci 27 (Suppl) 2:S96–S99

    Article  Google Scholar 

  25. Griffin NJ, Ruggiero L, Lipton RB, Silberstein SD et al (2003) Premonitory symptoms in migraine: an electronic diary study. Neurology 60(6):935–940

    Article  Google Scholar 

  26. Quintela E, Castillo J, Mnoz P, Pascual J (2006) Premonitory and resolution symptoms in migraine: a prospective study in 100 unselected patients. Cephalalgia 26(9):1051–1060

    Article  PubMed  CAS  Google Scholar 

  27. Demarquay G, Royet JP, Giroud P, Chazot G, Valade D, Ryvlin P (2006) Rating of olfactory judgement in migraine patients. Cephalalgia 26:1123–1130

    Article  PubMed  CAS  Google Scholar 

  28. Denuelle M, Fabre N, Payoux P, Chollet F, Geroud G (2007) Hypothalamic activation in spontaneous migraine attacks. Headache 47(10):1418–1426

    PubMed  Google Scholar 

  29. Cologno D, Ceccarelli G, Petretta V, D’Onofrio F, Bussone G (2008) High prevalence of dopaminergic premonitory symptoms in migraine patients with restless legs syndrome: a pathogenetic link? Neurol Sci 29 Suppl 1:S166–S168

    Article  PubMed  Google Scholar 

  30. D’Andrea G, Terrazzino S, Leon A, Fortin D, Perini F, Granella F, Bussone G (2004) Elevated levels of circulating trace amines in primary headaches. Neurology 62:1701–1705

    Article  PubMed  Google Scholar 

  31. D’Andrea G, Granella F, Leone M, Perini F, Farruggio A, Bussone G (2006) Abnormal platelet trace amine profiles in migraine with and without aura. Cephalalgia 26(8):968–972

    Article  PubMed  Google Scholar 

  32. Moulton EA, Burstein R, Tully S, Hargreaves R, Becerra L, Borsook D (2008) Inter-ictal dysfunction descending modulatory centers in migraine patients. PLoS ONE 3(11):e3799

    Article  PubMed  PubMed Central  Google Scholar 

  33. Fumal A, Laureys S, Di Clemente L, Boly M, Bohotin V, VandenheedeM Coppola GL, Salmon E, Kupers R, Shoenen J (2006) Orbitofrontal cortex involvement in chronic analgesic—overuse headache evolving from episodic migraine. Brain 129:543–550

    Article  PubMed  Google Scholar 

  34. Welch KMA, Cao Y, Aurora SK, Wiggins G, Vikingstad EM (1998) MRI of the occipital cortex, red nucleus and substantia nigra during visual aura of migraine. Neurology 51:1465–1469

    Article  PubMed  CAS  Google Scholar 

  35. Willer C, May A, Limmroth V, Juptner M, Kaube H, Schayck RV, Coenen HH, Diener HC (1995) Brain stem activation in spontaneous human migraine attacks. Nat Med 1(7):658–660

    Article  Google Scholar 

  36. Altier N, Stewart J (1999) The tachinin NK-1 receptor antagonist RP-67580, infused into ventral tegmental area prevents stress-induced analgesia in the formalin test. Physiol Behav 66:717–721

    Article  PubMed  CAS  Google Scholar 

  37. D’Andrea G, Terrazzino S, Fortin D, Farruggio A, Rinaldi L, Leon A (2003) HPLC electrochemical detection of trace amines in human plasma and platelets and expression of mRNA transcripts of trace amines receptors in circulating leukocytes. Neurosci Lett 346(1–2):89–92

    Article  PubMed  Google Scholar 

  38. Danielson TJ, Boulton AA, Robertson HS (1977) m-octopamine, p-octopamine and phenylethanolamine in mammalian brain: a sensitive specific assay and effect of drugs. J Neurochem 29:1131–1135

    Article  PubMed  CAS  Google Scholar 

  39. D’Andrea G, Granella F, Perini F, Farruggio A, Leone M, Bussone G (2006) Platelet levels of dopamine are increased in migraine and cluster headache. Headache 46(4):585–591

    Article  PubMed  Google Scholar 

  40. Fernandez F, Lea RA, Colson NJ, Bellis C, Quinlan S, Griffits LR (2006) Association between a 19 bp deletion polymorphism at dopamine beta-hydroxylase (DBH) locus and migraine with aura. J Neurol Sci 251(1–2):118–123

    Article  PubMed  CAS  Google Scholar 

  41. Magos A, Brincat M, Zilkha KJ, Studd JW (1985) Serum dopamine β-hydroxylase activity in menstrual migraine. J Neurol Neurosurg Psychiatry 48(4):328–331

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Gallai V, Gaiti A, Sarchielli P, Coata G, Trequattrini A, Paciaroni M (1992) Evidence for an altered dopamine β-hydroxylase activity in migraine and tension type headache. Acta Neurol Scand 86:403–446

    Article  PubMed  CAS  Google Scholar 

  43. D’Andrea G, Cananzi AR, Morra M, Fornasiero S, Zamberlan F, Welch KMA et al (1989) Platelet as model to test autonomic function in migraine. Funct Neurol 4(1):79–83

    PubMed  Google Scholar 

  44. Martignoni F, Blandini F, D’Andrea G et al (1990) Platelet and plasma catecholamines in migraine patients. Evidences of menstrual-related variability of the noradrenergic tone. Biog Amines 10:227–237

    Google Scholar 

  45. Nagel-Leiby S, D’Andrea G, Grunfeld S, Welch KMA (1990) Ovarian steroid levels in migraine with and without aura. Cephalalgia 10:147–152

    Article  PubMed  CAS  Google Scholar 

  46. Peres MFP, Sanchez del Rio M, Seabra MLV, Tufik S, Abucham J, Cipolla-Neto J, Siberstein SD, Zuckermann E (2007) Hypothalamic involvement in chronic migraine. J Neurol Neurosurg Psychiatry 71:747–751

    Article  Google Scholar 

  47. D’Andrea G, Hasselmark L, Cananzi AR, Alecci M, Perini F, Zamberlan F, Welch KMA (1995) Metabolism and menstrual cycle rhythmicity of serotonin in primary headaches. Headache 35(4):216–221

    Article  PubMed  Google Scholar 

  48. Fioroni L, D’Andrea G, Alecci M, Cananzi AR, Facchinetti F (1996) Platelet serotonin pathway in menstrual migraine. Cephalalgia 16(6):427–430

    Article  PubMed  CAS  Google Scholar 

  49. Casucci G, Villani V, Frediani F (2008) Central mechanism of action of antimigraine prophylactic drugs. Neurol Sci 29(Suppl 1):S123–S126

    Article  PubMed  Google Scholar 

  50. Bigal ME, Hetherington H, Pan J, Tsang A et al (2008) Occipital levels of GABA are related to severe headaches in migraine. Neurology 70(22):2078–2080

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Welch KMA, Chabi E, Nell JH, Bartosh K, Achar VS, Meyer JS (1975) Cerebrospinal fluid gamma aminobutyric acid levels and migraine. Br Med J 3(5882):516–517

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. Yang SP, Pau KY, Spies HG (1997) Gonadectomy alters tyrosine hydroxylase and norepinephrine transporter mRNA levels in the locus coeruleus of the rabbit. J Neuroendocrinol 9(10):763–768

    Article  PubMed  CAS  Google Scholar 

  53. Virmani A, Gaetani F, Imam S, Binienda Z, Ali S (2002) The protective role of l-carnitine against neurotoxicity evoked by drug abuse, methamphetamine, could be related to mitochondrial dysfunction. Ann N Y Acad Sci 965:225–232

    Article  PubMed  CAS  Google Scholar 

  54. Balbi T, Fusco M, Vasapollo D, Boschetto R, Cocco P, Leon A, Farruggio A (2005) The presence of trace amines in postmortem cerebrospinal fluid in humans. J Forensic Sci 50(3):630–632

    Article  PubMed  CAS  Google Scholar 

  55. Welch KMA, Nagesh V, Aurora SK, Gelman N (2001) Periacqueductal gray matter dysfunction in migraine: cause or burden of illness? Headache 41:629–637

    Article  PubMed  CAS  Google Scholar 

  56. Welch KMA (2009) Iron in the migraine brain: a resilient hypothesis. Cephalalgia 29(3):283–285

    Article  PubMed  CAS  Google Scholar 

  57. May A, Barha A, Buchel C, Frakowiak SR, Goasby JP (1998) Hypothalamic activation in cluster headache attacks. Lancet 352:275–278

    Article  PubMed  CAS  Google Scholar 

  58. May A, Barha A, Buchel C, Frakowiak SR, Goasby JP (2000) PET and MRA findings in cluster headache and MRA in experimental pain. Neurology 55:1328–1335

    Article  PubMed  CAS  Google Scholar 

  59. Piacentino M, D’Andrea G, Perini F, Volpin L (2014) Drug-resistant cluster headache: long-term evaluation of pain control by posterior hypothalamic deep-brain stimulation. World Neurosurg 81(2):442e11–15

    Article  Google Scholar 

  60. D’Andrea G, Granella F, Perini F, Farruggio A, Leone M, Bussone G (2006) Platelet levels of dopamine are increased in migraine and cluster headache. Headache 46:585–591

    Article  PubMed  Google Scholar 

  61. Scher AI, Stewart WF, Ricci JA, Lipton RB (2003) Factors associated with the onset and remission of chronic daily headache in a population-based study. Pain 106:81–89

    Article  PubMed  CAS  Google Scholar 

  62. Katsarava Z, Schneeweiss S, Kurth T et al (2004) Incidence and predictors for chronicity of headache in patients with episodic migraine. Neurology 62:788–790

    Article  PubMed  CAS  Google Scholar 

  63. D’Andrea G, D’Amico D, Bussone G, Bolner A et al (2013) The role of tyrosine metabolism in the pathogenesis of chronic migraine. Cephalalgia 33(11):932–937

    Article  PubMed  Google Scholar 

  64. Berry DB (2004) Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J Neurochem 90:257–271

    Article  PubMed  CAS  Google Scholar 

  65. Anwar MA, Ford WR, Herbert AA et al (2013) Signal transduction and modulating pathways in tryptamine-evoked vasopressor responses of the rat isolated perfused mesenteric bed. Vasc Pharmacol 58:140–149

    Article  CAS  Google Scholar 

  66. D’Andrea G, D’Amico D, Bussone G, Bolner A et al (2014) Tryptamine levels are low in plasma of chronic migraine and chronic tension type headache. Neurol Sci 35:1941–1945

    Article  PubMed  Google Scholar 

  67. De Boer SF, Koolhass JM (2005) 5-HT1A and 5-HT1B receptor agonists and aggression: a pharmacological challenge on the serotonin deficiency hypothesis. Eur J Pharmacol 526(1–3):125–139

    Article  PubMed  Google Scholar 

  68. Huo FQ, Huang FS, Lv BC et al (2010) Activation of serotonin in ventrolateral orbital cortex depresses persistent nociception : a presynaptic inhibition mechanism. Neurochem Int 57:749–755

    Article  PubMed  CAS  Google Scholar 

  69. Pockros AL, Pentkowski NS, Swinford SE et al (2011) Blockade of 5-HT2A in medial prefrontal cortex attenuates reinstatement of cue-elicited cocaine-seeking behavior in rats. Psycopharmacology (Berl) 213(2–3):307–320

    Article  CAS  Google Scholar 

  70. QuGL Huo FQ, Huang FS et al (2008) The role of 5-HT receptors subtypes in the ventrolateral orbital cortex of 5-HT-induced antinociception in the rat. Neuroscience 152:487–494

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest related to the publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Colavito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Andrea, G., Cevoli, S., Colavito, D. et al. Biochemistry of primary headaches: role of tyrosine and tryptophan metabolism. Neurol Sci 36 (Suppl 1), 17–22 (2015). https://doi.org/10.1007/s10072-015-2131-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-015-2131-3

Keywords

Navigation