Skip to main content

Advertisement

Log in

Transient elevation of synaptosomal mitoenergetic proteins and Hsp70 early in a rat model of chronic cerebrovascular hypoperfusion

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Chronic cerebral hypoperfusion (CCH) might account for the cognitive deficits associated with vascular cognitive impairment, but the mechanisms of hypoperfusion insulting to the cognition remain obscure. In the present study, Wistar rats underwent permanent occlusion of bilateral common carotid arteries to induce CCH. 2D-DIGE combined with MALDI-TOF MS was applied to determine the proteins that were differentially expressed in synaptosomes of prefrontal cortex and hippocampus. ATPsynβ, NDUFS1, UQCRC1 and Hsp70 were elevated both in synaptosomes of cortex and hippocampus at week 2 after operation, but subsided to baseline at week 4 except ATPsynβ which was still upregulated in synaptosomes of hippocampus at week 4. IDH3A and PDC-E2 were increased, respectively, in synaptosomes of prefrontal cortex and hippocampus at week 2, and showed no difference when compared to control at week 4. Malate dehydrogenase showed no difference in synaptosomes of prefrontal cortex and hippocampus at week 2, but showed an elevation in synaptosomes of prefrontal cortex at week 4. Our results imply that metabolic reserve and anti-oxidative stress might transiently exist in the early stage of CCH, which probably help cognitive save.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CCH:

Chronic cerebrovascular hypoperfusion

VCI:

Vascular cognitive impairment

2VO:

Permanent occlusion of bilateral common carotid arteries

VaD:

Vascular dementia

MCI:

Mild cognitive impairment

LTP:

Long-term potential

2D-DIGE:

Two-dimensional difference gel electrophoresis

MALDI-TOF MS:

Matrix-assisted laser desorption ionization time of flight mass spectrometry

ATPsynβ:

ATP synthase beta subunit

NDUFS1:

NADH dehydrogenase (ubiquinone) Fe-S protein 1

IDH3A:

Isocitrate dehydrogenase 3 (NAD+) alpha precursor

UQCRC1:

Ubiquinol-cytochrome c reductase core protein 1

PDC-E2:

Dihydrolipoamide acetyltransferase

MDH:

Malate dehydrogenase

References

  1. Moorhouse P, Rockwood K (2008) Vascular cognitive impairment: current concepts and clinical developments. Lancet Neurol 7(3):246–255

    Article  PubMed  Google Scholar 

  2. Robishaw C, Beadle M (2010) Vascular dementia. US Pharm 35(1):46–48

    Google Scholar 

  3. Roman GC (2005) Vascular dementia prevention: a risk factor analysis. Cerebrovasc Dis 20(Suppl 2):91–100

    PubMed  Google Scholar 

  4. Bakker FC, Klijn CJ, Jennekens-Schinkel A, Kappelle LJ (2000) Cognitive disorders in patients with occlusive disease of the carotid artery: a systematic review of the literature. J Neurol 247(9):669–676

    Article  PubMed  CAS  Google Scholar 

  5. Sekhon LH, Morgan MK, Spence I, Weber NC (1994) Chronic cerebral hypoperfusion and impaired neuronal function in rats. Stroke 25(5):1022–1027

    Article  PubMed  CAS  Google Scholar 

  6. Ni J, Ohta H, Matsumoto K, Watanabe H (1994) Progressive cognitive impairment following chronic cerebral hypoperfusion induced by permanent occlusion of bilateral carotid arteries in rats. Brain Res 653(1–2):231–236

    Article  PubMed  CAS  Google Scholar 

  7. Ohta H, Nishikawa H, Kimura H, Anayama H, Miyamoto M (1997) Chronic cerebral hypoperfusion by permanent internal carotid ligation produces learning impairment without brain damage in rats. Neuroscience 79(4):1039–1050

    Article  PubMed  CAS  Google Scholar 

  8. Tanaka K, Wada N, Ogawa N (2000) Chronic cerebral hypoperfusion induces transient reversible monoaminergic changes in the rat brain. Neurochem Res 25(2):313–320

    Article  PubMed  CAS  Google Scholar 

  9. Scheff SW, DeKosky ST, Price DA (1990) Quantitative assessment of cortical synaptic density in Alzheimer’s disease. Neurobiol Aging 11(1):29–37

    Article  PubMed  CAS  Google Scholar 

  10. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (2004) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30(4):572–580

    Article  Google Scholar 

  11. DeKosky ST, Scheff SW (2004) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27(5):457–464

    Article  Google Scholar 

  12. Coleman PD, Yao PJ (2003) Synaptic slaughter in Alzheimer’s disease. Neurobiol Aging 24(8):1023–1027

    Article  PubMed  CAS  Google Scholar 

  13. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298(5594):789–791

    Article  PubMed  CAS  Google Scholar 

  14. Scheff SW, Price DA (2001) Alzheimer’s disease-related synapse loss in the cingulate cortex. J Alzheimers Dis 3(5):495–505

    PubMed  Google Scholar 

  15. Arendt T (2009) Synaptic degeneration in Alzheimer’s disease. Acta Neuropathol 118(1):167–179

    Article  PubMed  Google Scholar 

  16. Wilkins MR, Pasquali C, Appel RD, Ou K, Golaz O, Sanchez JC, Yan JX, Gooley AA, Hughes G, Humphery-Smith I, Williams KL, Hochstrasser DF (1996) From proteins to proteomes: large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biotechnology (NY) 14(1):61–65

    Article  CAS  Google Scholar 

  17. Anderson NL, Anderson NG (1998) Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis 19(11):1853–1861

    Article  PubMed  CAS  Google Scholar 

  18. Khanna R, Zougman A, Stanley EF (2007) A proteomic screen for presynaptic terminal N-type calcium channel (CaV2.2) binding partners. J Biochem Mol Biol 40(3):302–314

    Article  PubMed  CAS  Google Scholar 

  19. Zhang L, Chang M, Li H, Hou S, Zhang Y, Hu Y, Han W, Hu L (2007) Proteomic changes of PC12 cells treated with proteasomal inhibitor PSI. Brain Res 1153:196–203

    Article  PubMed  CAS  Google Scholar 

  20. Tsuji T, Shiozaki A, Kohno R, Yoshizato K, Shimohama S (2002) Proteomic profiling and neurodegeneration in Alzheimer’s disease. Neurochem Res 27(10):1245–1253

    Article  PubMed  CAS  Google Scholar 

  21. Kunej T, Wang Z, Michal JJ, Daniels TF, Magnuson NS, Jiang Z (2007) Functional UQCRC1 polymorphisms affect promoter activity and body lipid accumulation. Obesity (Silver Spring) 15(12):2896–2901

    Article  CAS  Google Scholar 

  22. Reed TT, Pierce WM, Markesbery WR, Butterfield DA (2009) Proteomic identification of HNE-bound proteins in early Alzheimer disease: insights into the role of lipid peroxidation in the progression of AD. Brain Res 1274:66–76

    Article  PubMed  CAS  Google Scholar 

  23. Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE (2005) Mitochondrial abnormalities in Alzheimer brain: mechanistic implications. Ann Neurol 57(5):695–703

    Article  PubMed  CAS  Google Scholar 

  24. Hartl FU, Martin J, Neupert W (1992) Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60. Annu Rev Biophys Biomol Struct 21:293–322

    Article  PubMed  CAS  Google Scholar 

  25. Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR (2000) Heat-shock protein 70 inhibits apoptosis by preventing recruitment of procaspase-9 to the Apaf-1 apoptosome. Nat Cell Biol 2(8):469–475

    Article  PubMed  CAS  Google Scholar 

  26. Lee KS, Chung JH, Oh BH, Hong CH (2008) Increased plasma levels of heat shock protein 70 in patients with vascular mild cognitive impairment. Neurosci Lett 436(2):223–226

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant 30770756).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Sun.

Additional information

H. N. Zhang and J. Wu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H.N., Wu, J., Jin, T. et al. Transient elevation of synaptosomal mitoenergetic proteins and Hsp70 early in a rat model of chronic cerebrovascular hypoperfusion. Neurol Sci 34, 471–477 (2013). https://doi.org/10.1007/s10072-012-1063-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-012-1063-4

Keywords

Navigation