Pigeons (Columba livia) integrate visual motion using the vector average rule: effect of viewing distance

Abstract

Integrating local motion signals detected by the primary motion detector is crucial for representing a rigid, two-dimensional motion. The nature of motion integration has been studied using stimuli consisting of two superimposed sinusoidal gratings of different orientations, called plaid motion, and it has been shown that humans perceive integrated motion in the direction where the component constraint lines are intersected. We previously found that pigeons and humans perceive different movement directions from plaid motion; pigeons responded to the vector average direction of the gratings. Although this suggests that the underlying processes of motion integration differ between the two species, the viewing distance in the pigeon experiment, which used a touch panel procedure, was much smaller than in typical human experiments. The current study investigated the potential effect of viewing distance on the perception of plaid motion in pigeons. We trained six pigeons to detect whether motion directions were tilted leftward or rightward while a visual display was presented 0 or 40 cm from an operant chamber. The pigeons responded to plaid stimuli for both viewing distance conditions as if they perceived motion in the vector average direction of two-component gratings. The result indicates that the species difference in plaid perception is not an artefact of viewing distance and suggests that pigeons use a different strategy than humans for integrating visual motion.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

Data availability

The datasets generated or analyzed during the current study and the supplementary stimulus movies and figures are available in the Open Science Framework repository, https://doi.org/10.17605/OSF.IO/Z4UP3.

References

  1. Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A 2:284–299. https://doi.org/10.1364/JOSAA.2.000284

    CAS  Article  PubMed  Google Scholar 

  2. Adelson EH, Movshon JA (1982) Phenomenal coherence of moving visual patterns. Nature 300:523–525. https://doi.org/10.1038/300523a0

    CAS  Article  PubMed  Google Scholar 

  3. Binggeli RL, Paule WJ (1969) The pigeon retina: quantitative aspects of the optic nerve and ganglion cell layer. J Comp Neurol 137:1–18. https://doi.org/10.1002/cne.901370102

    CAS  Article  PubMed  Google Scholar 

  4. Blough PM (1971) The visual acuity of the pigeon for distant targets. J Exp Anal Behav 15:57–67. https://doi.org/10.1901/jeab.1971.15-57

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Bowns L, Alais D (2006) Large shifts in perceived motion direction reveal multiple global motion solutions. Vis Res 46:1170–1177. https://doi.org/10.1016/j.visres.2005.08.029

    Article  PubMed  Google Scholar 

  6. Brainard DH (1997) The psychophysics toolbox. Spat Vis 10:433–436

    CAS  Article  PubMed  Google Scholar 

  7. Goto K, Lea SE (2003) Discrimination of direction of movements in pigeons following previous experience of motion/static discrimination. J Exp Anal Behav 80:29–42. https://doi.org/10.1901/jeab.2003.80-29

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hataji Y, Kuroshima H, Fujita K (2019) Pigeons integrate visual motion signals differently than humans. Sci Rep 9:13441

    Article  Google Scholar 

  9. Hayes B, Holden AL (1983) The distribution of displaced ganglion cells in the retina of the pigeon. Exp Brain Res 49:181–188. https://doi.org/10.1007/BF00238578

    CAS  Article  PubMed  Google Scholar 

  10. Howard SR, Avargues-Weber A, Garcia JE, Stuart-Fox D, Dyer AG (2017) Perception of contextual size illusions by honeybees in restricted and unrestricted viewing conditions. Proc R Soc B 284:20172278. https://doi.org/10.1098/rspb.2017.2278

    Article  PubMed  Google Scholar 

  11. Jassik-Gerschenfeld D, Guichard J (1972) Visual receptive fields of single cells in the pigeon's optic tectum. Brain Res 40:303–317. https://doi.org/10.1016/0006-8993(72)90136-9

    CAS  Article  PubMed  Google Scholar 

  12. Martinoya C, Rivaud S, Bloch S (1983) Comparing frontal and lateral viewing in the pigeon. II. Velocity thresholds for movement discrimination. Behav Brain Res 8:375–385. https://doi.org/10.1016/0166-4328(83)90182-1

    CAS  Article  PubMed  Google Scholar 

  13. Miceli D, Repérant J, Medina M, Volle M, Rio JP (2006) Distribution of ganglion cells in the pigeon retina labeled via retrograde transneuronal transport of the fluorescent dye rhodamine β-isothiocyanate from the telencephalic visual Wulst. Brain Res 1098:94–105. https://doi.org/10.1016/j.brainres.2006.04.091

    CAS  Article  PubMed  Google Scholar 

  14. Movshon JA, Newsome WT (1996) Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J Neurosci 16:7733–7741. https://doi.org/10.1523/JNEUROSCI.16-23-07733.1996

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Nakamura N, Watanabe S, Fujita K (2008) Pigeons perceive the Ebbinghaus–Titchener circles as an assimilation illusion. J Exp Psychol Animal Behav Process 34:375–387. https://doi.org/10.1037/0097-7403.34.3.375

    Article  Google Scholar 

  16. Nakamura N, Watanabe S, Fujita K (2014) A reversed Ebbinghaus–Titchener illusion in bantams (Gallus gallus domesticus). Anim Cogn 17:471–481. https://doi.org/10.1007/s10071-013-0679-y

    Article  PubMed  Google Scholar 

  17. Ng BSW, Grabska-Barwińska A, Güntürkün O, Jancke D (2010) Dominant vertical orientation processing without clustered maps: early visual brain dynamics imaged with voltage-sensitive dye in the pigeon visual Wulst. J Neurosci 30:6713–6725. https://doi.org/10.1523/JNEUROSCI.4078-09.2010

    CAS  Article  PubMed  Google Scholar 

  18. Qadri MA, Cook RG (2015) Experimental divergences in the visual cognition of birds and mammals. Comp Cogn Behav Rev 10:73–105. https://doi.org/10.3819/ccbr.2015.100004(2015)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Remy M, Güntürkün O (1991) Retinal afferents to the tectum opticum and the nucleus opticus principalis thalami in the pigeon. J Comp Neurol 305:57–70. https://doi.org/10.1002/cne.903050107

    CAS  Article  PubMed  Google Scholar 

  20. Shimizu T, Watanabe S (2012) The avian visual system: overview. In: Lazareva OFS, Shimizu T, Wasserman E (eds) How animals see the world. Oxford University Press, Oxford, pp 473–482

    Google Scholar 

  21. Weintraub DJ (1979) Ebbinghaus illusion: context, contour, and age influence the judged size of a circle amidst circles. J Exp Psychol Hum Percept Perform 5:353–364. https://doi.org/10.1037/0096-1523.5.2.353

    CAS  Article  PubMed  Google Scholar 

  22. Wylie DR, Gutiérrez-Ibáñez C, Gaede AH, Altshuler DL, Iwaniuk AN (2018) Visual-cerebellar pathways and their roles in the control of avian flight. Front Neurosci 12:223. https://doi.org/10.3389/fnins.2018.00223

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yo C, Wilson HR (1992) Perceived direction of moving two-dimensional patterns depends on duration, contrast and eccentricity. Vis Res 32:135–147. https://doi.org/10.1016/0042-6989(92)90121-X

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgement

This study was financially supported by JSPS KAKENHI Grant Numbers 15J02739 to YH and 16H01505 and 16H06301 to KF. We thank James R. Anderson for editing the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuya Hataji.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

This study adhered to the ethical guidelines of Kyoto University and was approved by the Animal Experiments Committee of the Graduate School of Letters, Kyoto University (No. 18-32).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hataji, Y., Fujita, K. & Kuroshima, H. Pigeons (Columba livia) integrate visual motion using the vector average rule: effect of viewing distance. Anim Cogn 23, 819–825 (2020). https://doi.org/10.1007/s10071-020-01376-1

Download citation

Keywords

  • Visual motion
  • Plaid motion
  • Viewing distance
  • Pigeons