The transition of object to mental manipulation: beyond a species-specific view of intelligence

Abstract

Many attempts have been made to classify and evaluate the nature of intelligence in humans and other species (referred to as the ‘g’ factor in the former and the G factor in the latter). The search for this essential structure of mental life has generated various models and definitions, yet open questions remain. Specifically, referring to intelligence by overemphasizing the anthropocentric terminology and its ethnocentric overlay is insufficient to account for individual differences and limits its generalizability in biological and cultural contexts. The present work is an attempt to adopt a different perspective on the ‘g/G’ factor and its measurement. We suggest that intelligence, or g/G, is reflected in a biological capacity that evolved from object manipulation in animals, into mental manipulation in humans, in response to various environmental conditions.

This is a preview of subscription content, log in to check access.

References

  1. Anderson ML (2010) Neural reuse: A fundamental organizational principle of the brain. Behav Brain Sci 33:245–313

    PubMed  Google Scholar 

  2. Auersperg AM, Van Horik JO, Bugnyar T, Kacelnik A, Emery NJ, von Bayern AM (2015) Combinatory actions during object play in Psittaciformes (Diopsittaca nobilis, Pionites melanocephala, Cacatua goffini) and corvids (Corvus corax, C. monedula, C. moneduloides). J Comp Psychol 129:62–71

    PubMed  Google Scholar 

  3. Bar-Hen-Schweiger M, Henik A (2019) Intelligence as mental manipulation in humans and nonhuman animals. Anim Sentience 23:31

    Google Scholar 

  4. Bar-Hen-Schweiger M, Schweiger A, Henik A (2017) G but not g: In search of the evolutionary continuity of intelligence. Behav Brain Sci 40:e199

    PubMed  Google Scholar 

  5. Bard KA (1990) “Social tool use” by free-ranging orangutans: A Piagetian and developmental perspective on the manipulation of an animate object. In: Parker ST, Gibson KR (eds) Language and intelligence in monkeys and apes: comparative developmental perspectives. Cambridge University Press, New York, pp 356–378

    Google Scholar 

  6. Bard KA (2017) Dyadic interactions, attachment and the presence of triadic interactions in chimpanzees and humans. Infant Behav Dev 48:13–19

    PubMed  Google Scholar 

  7. Bard KA, Gardner KH (1996) Influences on development in infant chimpanzees: Enculturation, temperament, and cognition. In: Russon AE, Bard KA, Parker ST (eds) Reaching into thought: the minds of the great apes. Cambridge University Press, New York, pp 235–256

    Google Scholar 

  8. Belsky J, Most RK (1981) From exploration to play: a cross-sectional study of infant free play behavior. Dev Psychol 17:630–639

    Google Scholar 

  9. Braine MDS (1963) The ontogeny of English phrase structure: the first phase. Language 39:1–13. https://doi.org/10.2307/410757

    Article  Google Scholar 

  10. Burkart JM, Schubiger MN, van Schaik CP (2016) The evolution of general intelligence. Behav Brain Sci 40:e195

    PubMed  Google Scholar 

  11. Bütepage J, Cruciani S, Kokic M, Welle M, Kragic D (2019) From visual understanding to complex object manipulation. Annu Rev Control Robot Auton Syst. https://doi.org/10.1146/annurev-control-053018-023735

    Article  Google Scholar 

  12. Byrne RW, Corp N (2004) Neocortex size predicts deception rate in primates. Proc Roy Soc B Bio Sci 271:1693–1699

    Google Scholar 

  13. Call J, Tomasello M (2008) Does the chimpanzee have a theory of mind? 30 years later. Trends Cogn Sci 12:187–192

    PubMed  Google Scholar 

  14. Cattell RB (1941) Some theoretical issues in adult intelligence testing. Psychol Bull 38:592

    Google Scholar 

  15. Cole MW, Ito T, Bassett DS, Schultz DH (2016) Activity flow over resting-state networks shapes cognitive task activations. Nat Neurosci 19:1718–1726

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Damerius LA, Burkart JM, van Noordwijk MA, Haun DB, Kosonen ZK, Galdikas BM et al (2019) General cognitive abilities in orangutans (Pongo abelii and Pongo pygmaeus). Intelligence 74:3–11

    Google Scholar 

  17. Danilovich S, Yovel Y (2019) Integrating vision and echolocation for navigation and perception in bats. Sci Adv 5:eaaw6503

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Darwin C (1871) The descent of man, and selection in relation to sex. Murray, London

    Google Scholar 

  19. Deary IJ, Penke L, Johnson W (2010) The neuroscience of human intelligence differences. Nat Rev Neurosci 11:201–211

    CAS  PubMed  Google Scholar 

  20. Doré FY, Dumas C (1987) Psychology of animal cognition: Piagetian studies. Psychol Bull 102:219–233

    Google Scholar 

  21. Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23:475–483

    CAS  PubMed  Google Scholar 

  22. Focaroli V, Iverson JM (2017) Children’s object manipulation—A tool for knowing the external world and for communicative development. In: Bertolaso M, Di Stefano N (eds) The hand. Studies in applied philosophy, epistemology and rational ethics, vol 38. Springer, Cham, pp 19–27

    Google Scholar 

  23. Gajdon GK, Lichtnegger M, Huber L (2014) What a parrot’s mind adds to play: the urge to produce novelty fosters tool use acquisition in kea. Open J Anim Sci 4:51–58

    Google Scholar 

  24. Gardner BT, Gardner RA (1971) Two-way communication with an infant chimpanzee. In: Schrier AM, Stollnitz F (eds) Behavior of nonhuman primates: modern research trends, vol 4. Academic Press, New York, pp 117–184

    Google Scholar 

  25. Gardner H (1983) Biological foundations of intelligence. Frames of mind: the theory of multiple intelligences. Basic Books, New York, pp 31–58

    Google Scholar 

  26. Gottfredson LS (1997) Why g matters: the complexity of everyday life. Intelligence 24:79–132

    Google Scholar 

  27. Greenfield PM (1991) Language, tools and brain: the ontogeny and phylogeny of hierarchically organized sequential behavior. Behav Brain Sci 14:531–595

    Google Scholar 

  28. Hayashi M (2007) Stacking of blocks by chimpanzees: developmental processes and physical understanding. Anim Cogn 10:89–103

    PubMed  Google Scholar 

  29. Hayashi M (2010) Using an object manipulation task as a scale for comparing cognitive development in chimpanzees and humans. In: Lonsdorf EV, Ross SR, Matsuzawa T (eds) The mind of the chimpanzee: Ecological and experimental chimpanzees. The University of Chicago Press, Chicago, pp 32–41

    Google Scholar 

  30. Hayashi M, Matsuzawa T (2003) Cognitive development in object manipulation by infant chimpanzees. Anim Cogn 6:225–233

    PubMed  Google Scholar 

  31. Hayashi M, Takeshita H, Matsuzawa T (2006) Cognitive development in apes and humans assessed by object manipulation. In: Matsuzawa T, Tomonaga M, Tanaka M (eds) Cognitive development in chimpanzees. Springer, Tokyo, pp 395–410

    Google Scholar 

  32. Heldstab SA, Kosonen ZK, Koski SE, Burkart JM, Van Schaik CP, Isler K (2016) Manipulation complexity in primates coevolved with brain size and terrestriality. Sci Rep 6:e24528

    Google Scholar 

  33. Henik A, Bar-Hen-Schweiger M, Jamaludin A (2019) Yes, memorize. Manuscript under review

  34. Herrmann E, Call J, Hernández-Lloreda MV, Hare B, Tomasello M (2007) Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis. Science 317:1360–1366

    CAS  PubMed  Google Scholar 

  35. Horn JL (1965) A rationale and test for the number of factors in factor analysis. Psychometrika 30:179–185

    CAS  Google Scholar 

  36. Huber A, Barber AL, Faragó T, Müller CA, Huber L (2017) Investigating emotional contagion in dogs (Canis familiaris) to emotional sounds of humans and conspecifics. Anim Cogn 20:703–715

    PubMed  PubMed Central  Google Scholar 

  37. Iverson JM (2010) Developing language in a developing body: the relationship between motor development and language development. J of Child Lang 37:229–261

    Google Scholar 

  38. Jacobs I, Kabadayi C, Osvath M (2019) The development of sensorimotor cognition in common ravens (Corvus corax) and its comparative evolution. Anim Behav Cogn 6:194–212

    Google Scholar 

  39. Kappeler PM (2019) A framework for studying social complexity. Behav Ecol Sociobiol 73:13. https://doi.org/10.1007/s00265-018-2601-8

    Article  Google Scholar 

  40. Kappeler P, Clutton-Brock T, Shultz S, Lukas D (2019) Social complexity: patterns, processes, and evolution. Behav Ecol Sociobiol 73:1–6. https://doi.org/10.1007/s00265-018-2613-4

    Article  Google Scholar 

  41. Lea SE, Osthaus B (2018) In what sense are dogs special? Canine cognition in comparative context. Learn Behav 46:335–363

    PubMed  PubMed Central  Google Scholar 

  42. Lourenço OM (2016) Developmental stages, Piagetian stages in particular: a critical review. New Ideas Psychol 40:123–137

    Google Scholar 

  43. MacDonald M, Lipscomb S, McClelland MM, Duncan R, Becker D, Anderson K, Kile M (2016) Relations of preschoolers' visual-motor and object manipulation skills with executive function and social behavior. Res Q Exerc Sport 87:396–407

    PubMed  PubMed Central  Google Scholar 

  44. Marino L (2017) Thinking chickens: a review of cognition, emotion, and behavior in the domestic chicken. Anim Cogn 20:127–147

    PubMed  PubMed Central  Google Scholar 

  45. Mathieu M, Bouchard MA, Granger L, Herscovitch J (1976) Piagetian object-permanence in Cebus capucinus, Lagothrica flavicauda and Pan troglodytes. Anim Behav 24:585–588

    Google Scholar 

  46. Matsuzawa T (2001) Primate foundations of human intelligence: a view of tool use in nonhuman primates and fossil hominids. In: Matsuzawa T (ed) Primate origins of human cognition and behavior. Springer-Verlag Publishing, New York, pp 3–25

    Google Scholar 

  47. Merola I, Prato-Previde E, Marshall-Pescini S (2012) Social referencing in dog-owner dyads? Anim Cogn 15:175–185

    CAS  PubMed  Google Scholar 

  48. Navarro J, Osiurak F (2017) The more intelligent people are, the more they use tools. Psychol Française 62:85–91

    Google Scholar 

  49. Neisser U, Boodoo G, Bouchard TJ Jr, Boykin AW, Brody N, Ceci SJ, Halpern DF, Loehlin JC, Perloff R, Sternberg RJ, Urbina S (1996) Intelligence: knowns and unknowns. Amer Psychol 51:77–101

    Google Scholar 

  50. Oden DL, Thompson RK, Premack D (1988) Spontaneous transfer of matching by infant chimpanzees (Pan troglodytes). J Exp Psych Anim Behav Process 14:140–145

    CAS  Google Scholar 

  51. Orr E, Geva R (2015) Symbolic play and language development. Infant Behav Dev 38:147–161

    PubMed  Google Scholar 

  52. Osiurak F (2014) What neuropsychology tells us about human tool use? The four constraints theory (4CT): mechanics, space, time, and effort. Neuropsychol Rev 24:88–115

    PubMed  Google Scholar 

  53. Owen K (1992) The suitability of Raven's Standard Progressive Matrices for various groups in South Africa. Pers Indiv Differ 13:149–159

    Google Scholar 

  54. Pahl M, Si A, Zhang S (2013) Numerical cognition in bees and other insects. Front Psychol 4:e162

    Google Scholar 

  55. Parker ST (1977) Piaget's sensorimotor series in an infant macaque: A model for comparing unstereotyped behavior and intelligence in human and nonhuman primates. In: Chevalier-Skolnikoff S, Poirier F (eds) Primate biosocial development. Garland, New York, pp 43–112

    Google Scholar 

  56. Parker ST (2015) Re-evaluating the extractive foraging hypothesis. New Ideas Psychol 37:1–12

    Google Scholar 

  57. Parker ST, Gibson KR (1977) Object manipulation, tool use and sensorimotor intelligence as feeding adaptations in cebus monkeys and great apes. J Hum Evol 6:623–641

    Google Scholar 

  58. Parker ST, McKinney ML (1999) Origins of intelligence: the evolution of cognitive development in monkeys, apes, and humans. Johns Hopkins University Press, Baltimore

    Google Scholar 

  59. Pepperberg IM (2002) The value of the Piagetian framework for comparative cognitive studies. Anim Cogn 5:177–182

    PubMed  Google Scholar 

  60. Pepperberg IM (2012) Further evidence for addition and numerical competence by a Grey parrot (Psittacus erithacus). Anim Cogn 15:711–717

    PubMed  Google Scholar 

  61. Pepperberg IM (2013) Abstract concepts: Data from a Grey parrot. Behav Process 93:82–90

    Google Scholar 

  62. Pepperberg IM, Shive HR (2001) Simultaneous development of vocal and physical object combinations by a grey parrot (Psittaus erithacus): Bottle caps, lids, and labels. J Comp Psychol 115:376–384

    CAS  PubMed  Google Scholar 

  63. Petersen SE, Posner MI (2012) The attention system of the human brain: 20 years after. Annu Rev Neurosci 35:73–89

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Piaget J (1952) The origins of intelligence in children. International Universities Press, New York

    Google Scholar 

  65. Piaget J (1964) Part I: Cognitive development in children: Piaget development and learning. J Res Sci Teach 2:176–186

    Google Scholar 

  66. Piaget J (1971) Biology and knowledge. University of Chicago Press, Chicago

    Google Scholar 

  67. Piaget J (1977) The development of thought: Equilibration of cognitive structures (Trans Rosin A). The Viking Press, Oxford

    Google Scholar 

  68. Piaget J (2005) Language and thought of the child: Selected works, vol 5. Routledge, London

    Google Scholar 

  69. Piaget J, Inhelder B (1956) The child's concept of space. Routledge & Kegan Paul, London

    Google Scholar 

  70. Posner MI, Petersen SE (1990) The attention system of the human brain. Ann Rev Neurosci 13:25–42

    CAS  Google Scholar 

  71. Reader SM, Hager Y, Laland KN (2011) The evolution of primate general and cultural intelligence. Philos T R Soc B 366:1017–1027

    Google Scholar 

  72. Rosenbaum DA, Chapman KM, Weigelt M, Weiss DJ, van der Wel R (2012) Cognition, action, and object manipulation. Psychol Bull 138:924–946

    PubMed  PubMed Central  Google Scholar 

  73. Rozin P (1976) The evolution of intelligence and access to the cognitive unconscious. In: Sprague JM, Epstein AN (eds) Progress in psychobiology and physiological psychology. Academic Press, New York, pp 245–280

    Google Scholar 

  74. Shaw RC, Schmelz M (2017) Cognitive test batteries in animal cognition research: evaluating the past, present and future of comparative psychometrics. Anim Cogn 20:1003–1018

    PubMed  Google Scholar 

  75. Spearman C (1904) 'General intelligence', objectively determined and measured. Am J Psychol 15:201–293

    Google Scholar 

  76. Spottiswoode CN, Begg KS, Begg CM (2016) Reciprocal signaling in honeyguide–human mutualism. Science 353:387–389

    CAS  Google Scholar 

  77. Sternberg RJ (1984) Toward a triarchic theory of human intelligence. Behav Brain Sci 7:269–287

    Google Scholar 

  78. Sternberg RJ (2005) The theory of successful intelligence. Interam J Psychol 39:189–202

    Google Scholar 

  79. Sternberg RJ (2014) The development of adaptive competence: Why cultural psychology is necessary and not just nice. Dev Rev 34:208–224

    Google Scholar 

  80. Sternberg RJ (2017) It's time to move beyond the “Great Chain of Being”. Behav Brain Sci 40:e219

    PubMed  Google Scholar 

  81. Sternberg RJ (2019) A theory of adaptive intelligence and its relation to general intelligence. J Intell 7:23

    PubMed Central  Google Scholar 

  82. Sternberg RJ, Kaufman SB (2012) Trends in intelligence research. Intelligence 40:235–236

    Google Scholar 

  83. Takeshita H (2001) Development of combinatory manipulation in chimpanzee infants (Pan troglodytes). Anim Cogn 4:335–345

    CAS  PubMed  Google Scholar 

  84. Torigoe T (1985) Comparison of object manipulation among 74 species of non-human primates. Primates 26:182–194

    Google Scholar 

  85. Vander Heyden KM, Huizinga M, Kan KJ, Jolles J (2016) A developmental perspective on spatial reasoning: dissociating object transformation from viewer transformation ability. Cogn Dev 38:63–74

    Google Scholar 

  86. Vauclair J (1982) Sensorimotor intelligence in human and non-human primates. J Hum Evol 11:257–264

    Google Scholar 

  87. Vauclair J, Bard KA (1983) Development of manipulations with objects in ape and human infants. J Hum Evol 12:631–645

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Moran Bar-Hen-Schweiger.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bar-Hen-Schweiger, M., Henik, A. The transition of object to mental manipulation: beyond a species-specific view of intelligence. Anim Cogn 23, 691–701 (2020). https://doi.org/10.1007/s10071-020-01375-2

Download citation

Keywords

  • Intelligence
  • G/g factor
  • Object manipulation
  • Mental manipulation