Skip to main content

Predators in training: operant conditioning of novel behavior in wild Burmese pythons (Python molurus bivitattus)

Abstract

Large pythons and boas comprise a group of animals whose anatomy and physiology are very different from traditional mammalian, avian and other reptilian models typically used in operant conditioning. In the current study, investigators used a modified shaping procedure involving successive approximations to train wild Burmese pythons (Python molurus bivitattus) to approach and depress an illuminated push button in order to gain access to a food reward. Results show that these large, wild snakes can be trained to accept extremely small food items, associate a stimulus with such rewards via operant conditioning and perform a contingent operant response to gain access to a food reward. The shaping procedure produced robust responses and provides a mechanism for investigating complex behavioral phenomena in massive snakes that are rarely studied in learning research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Almli L, Burghardt G (2006) Environmental enrichment alters the behavioral profile of ratsnakes (Elaphe). J Appl Anim Welf Sci 9(2):85–109

    CAS  PubMed  Article  Google Scholar 

  2. Andreadis PT, Burghardt GM (2005) Unlearned appetite controls: watersnakes (Nerodia) take smaller meals when they have the choice. J Comp Psychol 119(3):304–310

    PubMed  Article  Google Scholar 

  3. Arnold SJ (1993) Foraging theory and prey-size–predator-size relations in snakes. In: Seigel RA, Collins JT (eds) Snakes ecology and behavior. McGraw Hill, New York, pp 87–115

    Google Scholar 

  4. Begun D, Kubie J, O’Keefe M, Halpern M (1988) Conditioned discrimination of airborne odorants by garter snakes. J Comp Psychol 102(1):35–43

    CAS  PubMed  Article  Google Scholar 

  5. Bullock T, Diecke F (1956) Properties of an infrared receptor. J Physiol 134:47–87

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  6. Burghardt GM, Layne D (1995) Effects of ontogenetic processes and rearing conditions. In: Warwick C, Frye FL, Murphy JB (eds) Health and welfare of captive reptiles. Chapman and Hall, London, pp 165–185

    Chapter  Google Scholar 

  7. Crawford F, Bartlett C (1966) Runway behavior of the gray rat snake with food and water reinforcement. Psychon Sci 4:99–100

    Article  Google Scholar 

  8. Dalland JI (1970) The measurement of ultrasonic hearing. In: Stebbins WC (ed) Animal psychophysics: the design and conduct of sensory experiments. Appleton-Century-Crofts, New York, pp 21–40

    Chapter  Google Scholar 

  9. Dorcas ME, Wilson JD, Reed RN, Snow RW, Rochford MR, Miller MA, Meshaka WE, Andreadis PT, Mazzotti FJ, Romagosa CM, Hart KM (2012) Severe mammal declines coincide with proliferation of invasive Burmese pythons in Everglades National Park. Proc Nat Acad Sci 109:2418–2422

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  10. Dove CJ, Snow RW, Rochford MR, Mazotti FJ (2011) Birds consumed by the invasive Burmese python (Python molurus bivittatus) in Everglades National Park, Florida, USA. Wilson J Ornithol 123:126–131

    Article  Google Scholar 

  11. Ebert J, Müller S, Westhoff G (2007) Behavioural examination of the infrared sensitivity of ball pythons. J Zool 272:340–347

    Article  Google Scholar 

  12. Gans C, Krakaure T, Paganelli CV (1968) Water loss in snakes: interspecific and intraspecific variability. Comp Biochem Physiol 27:747–761

    Article  Google Scholar 

  13. Gavish L (1979) Conditioned-response of snakes (Malpolon monspessulanum) to light. J Herpetol 13:357–359

    Article  Google Scholar 

  14. Gould J, Gould C (1994) The Animal Mind. W. H. Freeman, New York

    Google Scholar 

  15. Grace M, Matsushita A (2007) Neural correlates of complex behavior: vision and infrared imaging in boas and pythons. In: Henderson RW, Schuett G (eds) Biology of the boas, pythons and related taxa. Eagle Mountain, Eagle Mountain, pp 271–285

    Google Scholar 

  16. Gregory PT (2013) Once bitten twice shy: does previous experience influence behavioural decisions of snakes in encounters with predators? Ethology 119:919–925

    Google Scholar 

  17. Halpern M (1992) Nasal chemical senses in reptiles: structure and function. In: Gans C, Crews D (eds) Biology of the reptilia vol 18. University of Chicago Press, Chicago, pp 423–523

    Google Scholar 

  18. Halpern M, Halpern J, Erichsen E, Borghjid S (1997) The role of nasal chemical senses in garter snake responses to airborne odor cues from prey. J Comp Psychol 111:251–260

    CAS  PubMed  Article  Google Scholar 

  19. Hartline PH, Campbell HW (1969) Auditory and vibratory responses in the midbrains of snakes. Science 163:1221–1223

    CAS  PubMed  Article  Google Scholar 

  20. Haverly J, Kardong K (1996) Sensory deprivation effects on the predatory behavior of the rattlesnake, Crotalus viridis oreganus. Copeia 1996:419–428

    Article  Google Scholar 

  21. Holtzman D, Harris T, Aranguran G, Bostock E (1999) Spatial learning of an escape task by young corn snakes (Elaphe guttata guttata). Anim Behav 57(1):51–60

    PubMed  Article  Google Scholar 

  22. Kellogg W, Pomeroy W (1936) Maze learning in water snakes. J Comp Psychol 21:275–295

    Article  Google Scholar 

  23. Kleinginna P (1970) Operant conditioning in the indigo snake. Psychon Sci 18:53–55

    Article  Google Scholar 

  24. Kluge AG (1991) Boine phylogeny and research cycles. Miscellaneous Publications, Musem of Zoology, University of Michigan

  25. Kluge AG (1993) Aspidites and the phylogeny of pythonine snakes. Rec Aust Mus (Suppl) 19:1–77

    Article  Google Scholar 

  26. Krochmal A, Bakken G (2003) Thermoregulation is the pits: use of thermal radiation for retreat site selection by rattlesnakes. J Exp Biol 206:2539–2545

    PubMed  Article  Google Scholar 

  27. Kubie J, Halpern M (1975) Laboratory observations on trailing behavior in garter snakes. J Comp Physiol Psychol 89:667–674

    CAS  PubMed  Article  Google Scholar 

  28. McNab BK (2002) The physiological ecology of vertebrates: a view from energetics. Cornell University Press, New York

    Google Scholar 

  29. Molenaar G (1992) Anatomy and physiology of infrared sensitivity of snakes. In: Gans C, Ulinski P (eds) Biology of the reptilia, vol 17. University of Chicago Press, Chicago, pp 367–453

    Google Scholar 

  30. Murphy JC, Henderson RW (1997) Tales of giant snakes: a historical natural history of anacondas and pythons. Krieger, Malabar

    Google Scholar 

  31. Noble GK, Schmidt A (1937) The structure and function of the facial and labial pits of snakes. Proc Am Philos Soc 77:263–288

    Google Scholar 

  32. Noonan BP, Chippindale PT (2006) Dispersal and vicariance: the complex evolutionary history of boid snakes. Mol Phylogenet Evol 40:347–358

    CAS  PubMed  Article  Google Scholar 

  33. Overgaard J, Andersen JB, Wang T (2002) The effects of fasting duration on the metabolic response to feeding in Python molurus: an evaluation of the energetic costs associated with gastrointestinal growth and upregulation. Physiol Biochem Zool 75(4):360–368

    PubMed  Article  Google Scholar 

  34. Pittman SE, Hart KM, Cherkiss MS, Snow RW, Fujisaki I, Smith BJ, Mazotti FJ, Dorcas ME (2014) Homing of invasive Burmese pythons in South Florida: evidence for map and compass senses in snakes. Biol Lett 10:20140040

    PubMed  Article  Google Scholar 

  35. Pope CH (1961) The giant snakes. Alfred A Knopf, New York

    Google Scholar 

  36. Powell R (1972) Operant conditioning in the common crow (Corvus brachyrhynchos). Auk 89:738–742

    Article  Google Scholar 

  37. Rawlings LH, Rabosky DL, Donnellan SC, Hutchinson MN (2008) Python phylogenetics: inference from morphology and mitochondrial DNA. Biol J Linn Soc 93:603–619

    Article  Google Scholar 

  38. Reed RN (2005) An ecological risk assessment of nonnative boas and pythons as potentially invasive species in the United States. Risk Anal 25:753–766

    PubMed  Article  Google Scholar 

  39. Reiserer RS (2002) Stimulus control of caudal luring and other feeding responses: a program for research on visual perception in vipers. In: Schuett GW, Hoggren M, Douglas ME, Greene HW (eds) Biology of the vipers. Eagle Mountain, Eagle Mountain, pp 361–383

    Google Scholar 

  40. Safer A, Grace M (2004) Infrared imaging in vipers: differential responses of crotaline and viperine snakes to paired thermal targets. Behav Brain Res 154:55–61

    PubMed  Article  Google Scholar 

  41. Secor SM (2008) Digestive physiology of the Burmese python: broad regulation of integrated performance. J Exp Biol 211:3767–3774

    PubMed  Article  Google Scholar 

  42. Sillman A, Carver J, Loew E (1999) The photoreceptors and visual pigments in the retina of a boid snake, the ball python (Python regius). J Exp Biol 202:1931–1938

    PubMed  Google Scholar 

  43. Snow R, Brien M, Cherkiss M, Wilkins L, Mazotti F (2007) Dietary habits of the Burmese python, Python molurus bivittatus, from Everglades National Park, FL. Herpetol Bull 101:5–7

    Google Scholar 

  44. Starck JM, Beese K (2001) Structural flexibility of the intestine of Burmese python in response to feeding. J Exp Biol 204(2):325–335

    CAS  PubMed  Google Scholar 

  45. Takemasa T, Nakamura K (1935) A study of learning using snakes. Educ Psychol Res 1935:575–581

    Google Scholar 

  46. Thompson T, Sturm T (1965) Visual-reinforcer color and operant behavior in Siamese fighting fish. J Exp Anal Behav 8:341–344

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  47. Walker M, Bitterman M (1985) Conditioned responding to magnetic fields by honeybees. J Comp Physiol A 157:67–71

    Article  Google Scholar 

  48. Walker M, Diebel C, Haugh C, Pankhurst P, Montgomery J, Green C (1997) Structure and function of the vertebrate magnetic sense. Nature 390:371–376

    CAS  PubMed  Article  Google Scholar 

  49. Walls GL (1940) Ophthalmological implications for the early history of snakes. Copeia 1940:1–8

    Article  Google Scholar 

  50. Walls GL (1942) The vertebrate eye and its adaptive radiation. The Cranebrook Institute of Science, Michigan

    Book  Google Scholar 

  51. Wilson D (2007) Foraging ecology and diet of an ambush predator: the green python (Morelia viridis). In: Henderson RW, Powell R (eds) Biology of boas and pythons. Eagle, Eagle Mountain, pp 141–150

    Google Scholar 

  52. Wolfe D, Browne C (1940) A learning experiment with snakes. Copeia 1940:134

    Article  Google Scholar 

  53. Yager D, Thorpe S (1970) Investigations in goldfish color vision. In: Stebbins WC (ed) Animal psychophysics: the design and conduct of sensory experiments. Appleton-Century-Crofts, New York, pp 259–275

    Chapter  Google Scholar 

  54. Zug GR (1993) Herpetology. An introductory biology of amphibians and reptiles. Academic Press, San Diego

Download references

Acknowledgments

We thank the National Science Foundation (grant IOS 1052200 to MSG), Animal Behavior Society, the Society for Integrative and Comparative Biology, Herpetologists’ League and Sigma Xi for financial support. Thanks to J. Fobb and R. Snow for supplying pythons, L. Buist, G. Emer and D. Emer for mechanical support in designing a prototype apparatus, H. DeMarr for training support and C. Stewart for animal care.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Michael S. Grace.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10071_2014_797_MOESM1_ESM.pdf

Supplementary material Online Resource 1. A Burmese python performs the operant behavior chain. It assumes an observation position, waits for light illumination, pushes a button and is rewarded with access to the food reservoir where it retrieves the prey item. (PDF 225 kb)

10071_2014_797_MOESM2_ESM.pdf

Supplementary material Online Resource 2. Individual mean response latencies (±SE) during pre-training, shaping and discriminated operant (D.O.) training phases performed by five sub-adult pythons (SA, S4, S6, S11, S12). There were no significant differences in mean response latency between individual pythons (P>0.05). (PDF 36 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Emer, S.A., Mora, C.V., Harvey, M.T. et al. Predators in training: operant conditioning of novel behavior in wild Burmese pythons (Python molurus bivitattus). Anim Cogn 18, 269–278 (2015). https://doi.org/10.1007/s10071-014-0797-1

Download citation

Keywords

  • Python
  • Snake
  • Reptile
  • Predator
  • Behavior
  • Shaping
  • Operant conditioning