Biosynthesis of glyceride glycoside (nonionic surfactant) by amylosucrase, a powerful glycosyltransferase


Amylosucrase (ASase, E.C. is a powerful transglycosylation enzyme that can transfer glucose from sucrose to the hydroxyl (-OH) group of various compounds. In this study, recombinant ASases from Deinococcus geothermalis (DgAS) and Bifidobacterium thermophilum (BtAS) were used to synthesize biosurfactants based on the computational analysis of predicted docking simulations. Successful predictions of the binding affinities, conformations, and three-dimensional structures of three surfactants were computed from receptor-ligand binding modes. DgAS and BtAS were effective in the synthesis of biosurfactants from glyceryl caprylate, glyceryl caprate, and polyglyceryl-2 caprate. The results of the transglycosylation reaction were consistent for both ASases, with glyceryl caprylate acceptor showing the highest concentration, as confirmed by thin layer chromatography. Furthermore, the transglycosylation reactions of DgAS were more effective than those of BtAS. Among the three substrates, glyceryl caprylate glycoside and glyceryl caprate glycoside were successfully purified by liquid chromatography–mass spectrometry (LC–MS) with the corresponding molecular weights.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Abraham MJ, Murtola T, Schulz R, Páll S, Smith JC, Hess B, Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1: 19-25 (2015)

    Article  Google Scholar 

  2. Alhammad A, Adewale P, Kuttiraja M, Christopher L. Enhancing enzyme-aided production of fermentable sugars from poplar pulp in the presence of non-ionic surfactants. Bioprocess. Biosyst. Eng. 41: 1133-1142 (2018)

    CAS  Article  Google Scholar 

  3. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 87: 427-444 (2010)

    CAS  Article  Google Scholar 

  4. Cho HK, Kim HH, Seo DH, Jung JH, Park JH, Baek NI, Kim MJ, Yoo SH, Cha J, Kim YR, Park CS. Biosynthesis of (+)-catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Enzyme Microb. Technol. 49: 246-253 (2011)

    CAS  Article  Google Scholar 

  5. Choi SW, Lee JA, Yoo SH. Sucrose-based biosynthetic process for chain-length-defined α-glucan and functional sweetener by Bifidobacterium amylosucrase. Carbohydr. Polym. 205: 581-588 (2019)

    CAS  Article  Google Scholar 

  6. Emond S, Mondeil S, Jaziri K, André I, Monsan P, Remaud-Siméon M, Potocki-Véronèse G. Cloning, purification and characterization of a thermostable amylosucrase from Deinococcus geothermalis. FEMS Microbiol. Lett. 285: 25-32 (2008)

    CAS  Article  Google Scholar 

  7. Fenibo EO, Ijoma GN, Selvarajan R, Chikere CB. Microbial surfactants: The next generation multifunctional biomolecules for applications in the petroleum industry and its associated environmental remediation. Microorganisms 7: 581 (2019)

    CAS  Article  Google Scholar 

  8. Guérin F, Barbe S, Pizzut-Serin S, Potocki-Véronèse G, Guieysse D, Guillet V, Monsan P, Mourey L, Remaud-Siméon M, André I. Structural investigation of the thermostability and product specificity of amylosucrase from the bacterium Deinococcus geothermalis. J. Biol. Chem. 287: 6642-6654 (2012)

    Article  Google Scholar 

  9. Herman A. Antimicrobial ingredients as preservative booster and components of self-preserving cosmetic products. Curr. Microbiol. 76: 744-754 (2019)

    CAS  Article  Google Scholar 

  10. Hong S, Siziya IN, Seo MJ, Park CS, Seo DH. Molecular docking and kinetic studies of the A226N mutant of Deinococcus geothermalis amylosucrase with enhanced transglucosylation activity. J. Microbiol. Biotechn. 30: 1436-1442 (2020)

    Article  Google Scholar 

  11. Jeong JW, Seo DH, Jung JH, Park JH, Baek NI, Kim MJ, Park CS. Biosynthesis of glucosyl glycerol, a compatible solute, using intermolecular transglycosylation activity of amylosucrase from Methylobacillus flagellatus KT. Appl. Biochem. Biotechnol. 173: 904-917 (2014)

    CAS  Article  Google Scholar 

  12. Jung JH, Seo DH, Ha SJ, Song MC, Cha J, Yoo SH, Kim TJ, Baek NI, Baik MY, Park CS. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohydr. Res. 344: 1612-1619 (2009)

    CAS  Article  Google Scholar 

  13. Kim MD, Jung DH, Seo DH, Jung JH, Seo EJ, Baek NI, Yoo SH, Park CS. Acceptor specificity of amylosucrase from Deinococcus radiopugnans and its application for synthesis of rutin derivatives. J. Microbiol. Biotechn. 26: 1845-1854 (2016)

    CAS  Article  Google Scholar 

  14. Kim ER, Rha CS, Jung YS, Choi JM, Kim GT, Jung DH, Kim TJ, Seo DH, Kim DO, Park CS. Enzymatic modification of daidzin using heterologously expressed amylosucrase in Bacillus subtilis. Food Sci. Biotechnol. 28: 165-174 (2019)

  15. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B. PubChem 2019 update: improved access to chemical data. Nucleic Acids Res. 47: D1102-D1109 (2019)

  16. Kim SY, Seo DH, Kim SH, Hong YS, Lee JH, Kim YJ, Jung DH, Yoo SH, Park CS. Comparative study on four amylosucrases from Bifidobacterium species. Int. J. Biol. Macromol. 155: 535-542 (2020)

    CAS  Article  Google Scholar 

  17. Kosaric N, Sukan FV. Biosurfactants: production: properties: applications. CRC Press, Boca Raton, FL, USA. pp. 67 (2010)

  18. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30: 2785-2791 (2009)

    CAS  Article  Google Scholar 

  19. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR. Open Babel: An open chemical toolbox. J. Cheminformatics 3: 33 (2011)

    CAS  Article  Google Scholar 

  20. Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS. Environmental applications of biosurfactants: recent advances. Int. J. Mol. Sci. 12: 633-654 (2011)

    Article  Google Scholar 

  21. Picard C, Fioramonti J, Francois A, Robinson T, Neant F, Matuchansky C. Review article: bifidobacteria as probiotic agents–physiological effects and clinical benefits. Aliment. Pharmacol. Ther. 22: 495-512 (2005)

    CAS  Article  Google Scholar 

  22. Rahman P, Gakpe E. Production, characterisation and applications of biosurfactants-Review. Biotechnology 7: 360-370 (2008)

    CAS  Article  Google Scholar 

  23. Ruiz CC. Sugar-based surfactants: fundamentals and applications. CRC Press, Boca Raton, FL, USA. pp. 1-18 (2008)

    Google Scholar 

  24. Sarkar A, Goursaud J, Sharma MM, Georgiou G. A critical evaluation of MEOR processes. In Situ 13: 207-238 (1989)

    CAS  Google Scholar 

  25. Seo DH, Jung JH, Ha SJ, Song MC, Cha J, Yoo SH, Kim TJ, Baek NI, Park CS. Highly selective biotransformation of arbutin to arbutin-α-glucoside using amylosucrase from Deinococcus geothermalis DSM 11300. J. Mol. Catal. B:Enzym. 60: 113-118 (2009)

    CAS  Article  Google Scholar 

  26. Seo DH, Jung JH, Ha SJ, Cho HK, Jung DH, Kim TJ, Baek NI, Yoo SH, Park CS. High-yield enzymatic bioconversion of hydroquinone to α-arbutin, a powerful skin lightening agent, by amylosucrase. Appl. Microbiol. Biotechnol. 94: 1189-1197 (2012)

    CAS  Article  Google Scholar 

  27. Seo DH, Jung JH, Jung DH, Park S, Yoo SH, Kim YR, Park CS. An unusual chimeric amylosucrase generated by domain-swapping mutagenesis. Enzyme Microb. Technol. 86: 7-16 (2016)

    CAS  Article  Google Scholar 

  28. Seo DH, Jung JH, Park CS. Improved polymerization activity of Deinococcus geothermalis amylosucrase by semi-rational design: Effect of loop flexibility on the polymerization reaction. Int. J. Biol. Macromol. 130: 177-185 (2019)

    CAS  Article  Google Scholar 

  29. Seo DH, Yoo SH, Choi SJ, Kim YR, Park CS. Versatile biotechnological applications of amylosucrase, a novel glucosyltransferase. Food Sci. Biotechnol. 29: 1-16 (2020)

    CAS  Article  Google Scholar 

  30. Shome A, Roy S, Das PK. Nonionic surfactants: a key to enhance the enzyme activity at cationic reverse micellar interface. Langmuir 23: 4130-4136 (2007)

    CAS  Article  Google Scholar 

  31. Sobrinho H, Luna JM, Rufino RD, Porto A, Sarubbo LA. Biosurfactants: classification, properties and environmental applications. pp. 303–330. In: Recent Developments in Biotechnology. Govil JN (ed). Studium Press LLC, USA (2013)

  32. Soultani S, Ognier S, Engasser J-M, Ghoul M. Comparative study of some surface active properties of fructose esters and commercial sucrose esters. Colloids Surf. A Physicochem. Eng. Asp. 227: 35-44 (2003)

    CAS  Article  Google Scholar 

  33. Sousa SF, Fernandes PA, Ramos MJ. Protein–ligand docking: current status and future challenges. Proteins 65: 15-26 (2006)

    CAS  Article  Google Scholar 

  34. Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31: 455-461 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


This paper was supported by research funds provided to newly appointed professors of Jeonbuk National University in 2019.

Author information



Corresponding author

Correspondence to Dong-Ho Seo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, YJ., Siziya, I.N., Hong, S. et al. Biosynthesis of glyceride glycoside (nonionic surfactant) by amylosucrase, a powerful glycosyltransferase. Food Sci Biotechnol 30, 267–276 (2021).

Download citation


  • Amylosucrase
  • Biosurfactant
  • Docking simulation
  • Glyceryl glycoside
  • Transglycosylation