Characterization of Arabica and Robusta volatile coffees composition by reverse carrier gas headspace gas chromatography–mass spectrometry based on a statistical approach

Abstract

Nineteen samples of Arabica and 14 of Robusta coming from various plantation were analysed by dynamic headspace capillary gas chromatography–mass spectrometry to characterize the volatile fraction of green and roasted samples and the relationships of the same species with geographical origin. As concerns green beans, Arabica species appear characterized by high content of n-hexanol, furfural and amylformate, while Robusta species by greater content of ethylpyrazine, dimethylsulfone and 2-heptanone. Four variables, 4-methyl-2,3-dihydrofuran, n-hexanol, limonene and nonanal, appear involved in the characterization of the geographical origin of the analysed samples. The volatile fraction of the roasted Arabica samples, appear characterized by high content of pyridine, diacetyl, propylformate, acetone and 2,3-pentanedione, while Robusta samples by high content of methylbutyrate, 2,3-dimethylpyrazine and 3-hexanone. Considering geographical origin of the analysed samples, four compounds appear involved, in particular 2-butanone, methylbutyrate, methanol and ethylformate. Very accurate (error rate lower than 5%) rules to classify samples as Arabica or Robusta according to their compounds profile were developed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Barcarolo R, Casson C, Tutta C. Analysis of the volatile constituents of food by headspace GC-MS with reversal of the carrier gas flow during sampling. J. High Resol. Chromatogr. 15: 307-311 (1992)

    CAS  Article  Google Scholar 

  2. Barcarolo R, Casson P. Modified capillary GC/MS system enabling dynamic head space sampling with on-line cryofocusing and cold on column injection of liquid samples. J. High Resol. Chromatogr. 20: 24-28 (1997)

    CAS  Article  Google Scholar 

  3. Bertrand B, Boulanger R, Dussert S, Ribeyre F, Berthiot L, Descroix F, Joet T. Climatic factors directly impact the volatile organic compound fingerprint in green Arabica coffee bean as well as coffee beverage quality. Food Chem. 135: 2575-2583 (2012)

    CAS  Article  Google Scholar 

  4. Buffo RA, Cardelli-Freire C. Coffee flavor: An overview. Flavour Fragance J 19: 99-104 (2004)

    CAS  Article  Google Scholar 

  5. Cheong MW, Tong KH, Ong JJM, Liu SQ, Curran P, Yu B. Volatile composition and antioxidant capacity of Arabica coffee. Food Res. Int. 51: 388-396 (2013)

    CAS  Article  Google Scholar 

  6. Chung HS, Kim DH, Youn KS, Lee JB, Moon KD. Optimization of roasting conditions according to antioxidant activity and sensory quality of coffee brews. Food Sci. Biotechnol. 22: 23-29 (2013)

    CAS  Article  Google Scholar 

  7. Clarke RJ, Macrae R. Coffee. Chemistry. Volume 1 Elsevier Applied Science Publishers, London and New York. pp 1-26 (1985)

    Google Scholar 

  8. Colzi I, Taiti C, Marone E, Magnelli S, Gonnelli C, Mancuso S. Covering the different steps of the coffee processing: Can headspace VOC emission be exploited to successfully distinguish between Arabica and Robusta? Food Chem. 237: 257-263 (2017)

    CAS  Article  Google Scholar 

  9. Dulsat-Serra N, Quintanilla-Casas B, Vichi S. Volatile thiols in coffee: A review on their formation, degradation, assessment and influence on coffee sensory quality. Food Res. Int. 89: 982-988 (2016)

    CAS  Article  Google Scholar 

  10. Flament I. Coffee flavor chemistry. Wiley, Chichester, West Sussex, UK. pp. 29-37 (2001)

    Google Scholar 

  11. Grosch W. Evaluation of the key odorants of food by diluition experiments, aroma models and omission. Chem. Senses 26: 533-545 (2001)

    CAS  Article  Google Scholar 

  12. Herawati D, Giriwono PE, Dewi FNA, Kashiwagi T, Andarwulan N. Critical roasting level determines bioactive content and antioxidant activity of Robusta coffee beans. Food Sci. Biotechnol. 28: 7-14 (2019)

    CAS  Article  Google Scholar 

  13. Hinshaw JV. Capillary inlet systems for gas chromatographic trace analysis. J. Chromatogr. Sci. 26: 142-145 (1988)

    CAS  Article  Google Scholar 

  14. Holscher W, Steinhart H. Investigation of roasted coffee freshness with an improved headspace technique. Z. Lebensm. Unters Forsch. 195: 33-38 (1992)

    CAS  Article  Google Scholar 

  15. Huang LF, Wu MJ, Zhong KJ, Sun X, Liang YZ, Dai YH, Huang KL, Guo F. Fingerprint developing of coffee flavor by gas chromatography-mass spectrometry and combined chemometrics methods. Anal. Chim. Acta 588: 216-223 (2007)

    CAS  Article  Google Scholar 

  16. Kalua CM, Allen MS, Bedgood Jr. DR, Bishop AG, Prenzler PD, Robards K. Olive oil volatile compounds, flavour development and quality: A critical review. Food Chem. 100: 273-286 (2007)

    CAS  Article  Google Scholar 

  17. Korhonovà M, Hron K, Klimcikovà D, Muller L, Bednàr P, Bartàk P. Coffee aroma-statistical analysis of compositional data. Talanta 80: 710-715 (2005)

    Article  Google Scholar 

  18. Lee C, Lee Y, Lee JG, Buglass AJ. Development of a simultaneous multiple solid-phase microextraction-single shot-gas chromatography/mass spectrometry method and application to aroma profile analysis of commercial coffee. J. Chromatogr. A 1295: 21-24 (2013)

    Article  Google Scholar 

  19. Lim D, Kim W, Lee MG, Heo HJ, Chun OK, Kim DO. Evidence for protective effects of coffees on oxidative stress-induced apoptosis through antioxidant capacity of phenolics. Food Sci. Biotechnol. 21: 1735-1744 (2012)

    CAS  Article  Google Scholar 

  20. Mathieu F, Malosse C, Cain AH, Frérot B. Comparative headspace analysis of fresh red coffee berries from different cultivated varieties of coffee trees. J. High Resol. Chromatogr. 19: 298-300 (1996)

    CAS  Article  Google Scholar 

  21. Mondello L, Costa R, Tranchida PQ, Dugo P, Lo Presti M, Festa S, Dugo G. Reliable characterization of coffee bean aroma profiles by automated headspace solid phase microextraction-gas chromatography-mass spectrometry with the support of a dual-filter mass spectra library. J. Sep. Sci. 28: 1101-1109 (2005)

    CAS  Article  Google Scholar 

  22. Procida G, Giomo A, Cichelli A, Conte L S. Study of volatile compounds of virgin olive oils and sensory evaluation: a chemometric approach. J. Sci. Food Agric. 85: 2175-2183 (2005)

    CAS  Article  Google Scholar 

  23. Procida G, Pagliuca G, Cichelli A. Geographical differentiation between Italian and Spanish saffron based on volatile fraction composition. A preliminary study. Agro Food Ind. Hi-Tech. 20: 48-53 (2009)

  24. Procida G, Cichelli A, Lagazio C, Conte L S. Relationships between volatile compounds and sensory characteristics in virgin olive oil by analytical and chemometric approach. J. Sci. Food Agric. 96: 311-318 (2016)

    CAS  Article  Google Scholar 

  25. R. Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Available from: https://www.r-project.org/ Accessed Feb. 10, 2015

  26. Ribeiro JS, Augusto F, Salva TJG, Thomaziello RA, Ferreira MM. Prediction of sensory properties of Brazilian Arabica roasted coffees by headspace solid phase microextraction-gas chromatography and partial least squares. Anal. Chim. Acta 634: 172-179 (2009)

    CAS  Article  Google Scholar 

  27. Rocha S, Maetzu L, Barros A, Cid C, Coimbra MA. Screening and distinction of coffee brew based on headspace solid-phase microextraction/gas chromatography/principal components analysis. J. Sci. Food Agric. 84: 43-51 (2004)

    CAS  Article  Google Scholar 

  28. Sanz C, Czerny M, Cid C, Schieberle P. Comparison of potent odorants in a filtered coffee brew and in an instant coffee beverage by aroma extract dilution analysis. Eur. Food Res. Technol. 214: 299-302 (2002)

    CAS  Article  Google Scholar 

  29. Stefanon B, Procida G. Effects of including silage in the diet on volatile compound profiles in Montasio cheese and their modification during ripenind J. Dairy Res. 71: 58-65 (2004)

    CAS  Article  Google Scholar 

  30. Sunarharum WB, Williams DJ, Smyth HE. Complexity of coffee flavor: A compositional and sensory perspective. Food Res. Int. 62: 315-325 (2014)

    CAS  Article  Google Scholar 

  31. Toci AT, Farah A. Volatile compounds as potential defective coffee beans’ markers. Food Chem. 108: 1133-1141 (2008)

    CAS  Article  Google Scholar 

  32. Toledo PRAB, Pezza L, Pezza HR, Toci AT. Relationship between the different aspects related to coffee quality and their volatile compounds. Compr. Rev. Food Sci. Food Saf. 15: 705-719 (2016)

    Article  Google Scholar 

  33. Walker HE, Lehman KA, Wall MM, Siderhurst MS. Analysis of volatile profiles of green Hawai’ian coffee beans damaged by the coffee berry borer (Hypothenemus hampei). J. Sci. Food Agric. 99: 1954-1960 (2019)

    CAS  Article  Google Scholar 

  34. Yener S, Romano A, Cappellini L, Mark TD, Del Pulgar JS, Gasperi F, Navarini L, Biasiolo F. PTR-ToF-MS characterisation of roasted coffees (C. Arabica) from different geographic origins. J. Mass Spectrom. 49: 929-935 (2014)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Procida.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 83 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Procida, G., Lagazio, C., Cateni, F. et al. Characterization of Arabica and Robusta volatile coffees composition by reverse carrier gas headspace gas chromatography–mass spectrometry based on a statistical approach. Food Sci Biotechnol (2020). https://doi.org/10.1007/s10068-020-00779-7

Download citation

Keywords

  • Arabica and Robusta coffee
  • Dynamic head space
  • GC–MS
  • Green and roasted coffee
  • Volatile compound