Heat treatments of peptides from oyster (Crassostrea gigas) and the impact on their digestibility and angiotensin I converting enzyme inhibitory activity

Abstract

The changes of protein digestibility, the peptides in the digestive juice and angiotensin I converting enzyme (ACE) inhibitory activity after heating of oysters were investigated. The digestibility of raw oysters was 71.1%, and that of oysters heated at 100 °C was 67.9%. A total of 169 and 370 peptides were identified from the digestion of raw oysters and heated oysters, respectively. According to UPLC-Q-TOF-MS spectra, the peptides with a molecular weight below 2000 Da accounted for 87.6% of the total peptides of raw oysters and 94% of heated oysters. Testing the ACE inhibitory activity in vitro, the IC50 values of raw oyster and cooked oyster were 6.77 μg/mL and 3.34 μg/mL, respectively. Taken together, the results showed that heated oysters could produce more active peptides and provide ACE inhibitory activity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Asha KK, Kumari KRR, Kumar KA, Chatterjee NS, Anandan R, Mathew S. Sequence determination of an antioxidant peptide obtained by enzymatic hydrolysis of oyster Crassostrea madrasensis (Preston). Int. J. Pept. Res. Ther. 22: 421-433 (2016)

    CAS  Article  Google Scholar 

  2. Cai B, Pan J, Wu Y, Peng W, Sun H. Immune functional impacts of oyster peptide-based enteral nutrition formula (OPENF) on mice: a pilot study. Chin. J. Oceanol. Limn. 31: 813-820 (2013)

    CAS  Article  Google Scholar 

  3. Carlson-Bremer D, Norton TM, Sanders FJ, Winn B, Spinks M, Glatt BA, Mazzaro L, Jodice P, Chen TC, Dierenfeld ES. Circulating fat-soluble vitamin concentrations and nutrient composition of aquatic prey eaten by American oystercatchers (Haematopus palliatus palliatus) in the Southeastern United States. J. Avian Med. Surg. 28: 216-224 (2014)

    Article  Google Scholar 

  4. Carvalho AFU, de Sousa NM, Farias DF, da Rocha-Bezerra LCB, da Silva RMP, Viana MP, Gouveia ST, Sampaio SS, de Sousa MBD, de Lima GPG. Nutritional ranking of 30 Brazilian genotypes of cowpeas including determination of antioxidant capacity and vitamins. J. Food Compos. Anal. 26: 81-88 (2012)

    CAS  Article  Google Scholar 

  5. Chen H, Shi P, Fan F, Tu M, Xu Z, Xu X, Du M. Complementation of UPLC-Q-TOF-MS and CESI-Q-TOF-MS on identification and determination of peptides from bovine lactoferrin. J. Chromatogr. B. 1084: 150-157 (2018)

    CAS  Article  Google Scholar 

  6. Deb-Choudhury S, Haines S, Harland D, Clerens S, Van KC, Dyer J. Effect of cooking on meat proteins: mapping hydrothermal protein modification as a potential indicator of bioavailability. J. Agr. Food Chem. 62: 8187-8196 (2014)

    CAS  Article  Google Scholar 

  7. Escudero E, Mora L, Toldrá F. Stability of ACE inhibitory ham peptides against heat treatment and in vitro digestion. Food Chem. 161: 305-311 (2014)

    CAS  Article  Google Scholar 

  8. Froelich B A, Noble R T. Vibrio bacteria in raw oysters: managing risks to human health. Philos. Trans. R. Soc. Lond. B Biol. Sci. 371: 20150209 (2016)

    Article  Google Scholar 

  9. Fu J, Lin J, Zheng H, Chen Z, Tan A, Xie Y. Optimization of conditions for autolysis hydrolysis of Jinjiang oyster protein. Mod. Food Sci. Technol. 28:195-199 (2012)

    CAS  Google Scholar 

  10. Haberkorn H, Lambert C, Goïc NL, Moal J, Suquet M, Guéguen M, Sunila I, Soudant P. Effects of Alexandrium minutum exposure on nutrition-related processes and reproductive output in oysters Crassostrea gigas. Harmful Algae 9: 427-439 (2010)

    Article  Google Scholar 

  11. Hu X, Wu H, Fan X, Liu Q. Immunomodulatory activity of glycosaminoglycans from Jinjiang oyster Crassostrea rivularis. Mod. Food Sci. Technol. 12: 16-24 (2014)

    Google Scholar 

  12. Kamath SD, Abdel Rahman AM, Komoda T, Lopata AL. Impact of heat processing on the detection of the major shellfish allergen tropomyosin in crustaceans and molluscs using specific monoclonal antibodies. Food Chem. 141: 4031-4039 (2013)

    CAS  Article  Google Scholar 

  13. Kim S, Bang C, Kim A, Ha J, Choi Y, Choung S. Inhibitory effect of active peptide from oyster hydrolysate on Angiotensin-I Converting Enzyme (ACE). Planta Med. 79: 1665-1682 (2013)

    Google Scholar 

  14. Kitaoka C, Hosoe J, Hakamatsuka T, Araya K, Habara M, Ikezaki H, Hamada-Sato N, Shinagawa A, Yamamoto J, Kato-Yoshinaga Y. Taste component analysis of Pacific oysters cultured in Konagai, Nagasaki and taste evaluation using a taste-sensing system. Jpn. J. Food Chem. Saf. 23: 63-71 (2016)

    CAS  Google Scholar 

  15. Malgorzata T, Joost VN, Huub S. Food processing: the influence of the Maillard reaction on immunogenicity and allergenicity of food proteins. Nutrients 9: 835-852 (2017)

    Article  Google Scholar 

  16. Martínez-Fernández E, Acosta-Salmón H, Southgate PC. The nutritional value of seven species of tropical microalgae for black-lip pearl oyster (Pinctada margaritifera L.) larvae. Aquaculture 257: 491-503 (2006)

    Article  Google Scholar 

  17. Menezes EA, Oliveira AF, França CJ, Souza GB, Nogueira A. Bioaccessibility of Ca, Cu, Fe, Mg, Zn, and crude protein in beef, pork and chicken after thermal processing. Food Chem. 240: 75-83 (2017)

    Article  Google Scholar 

  18. Mora L, Bolumar T, Heres A, Toldrá F. Effect of cooking and simulated gastrointestinal digestion on the activity of generated bioactive peptides in aged beef meat. Food Funct. 8: 4347-4355 (2017)

    CAS  Article  Google Scholar 

  19. Nakamura A, Watanabe K, Ojima T, Ahn DH, Saeki H. Effect of Maillard reaction on allergenicity of scallop tropomyosin. J. Agric. Food Chem. 53: 7559-7564 (2005)

    CAS  Article  Google Scholar 

  20. New CY, Kantilal HK, Tan MTH, Nakaguchi Y, Nishibuchi M, Son R. Consumption of raw oysters: a risk factor for Vibrio parahaemolyticus infection. Int. Food Res. J. 21: 2459-2472 (2014)

    Google Scholar 

  21. Njintang NY, Mbofung CMF, Waldron KW. In vitro protein digestibility and physicochemical properties of dry red bean (Phaseolus vulgaris) flour: effect of processing and incorporation of soybean and cowpea flour. J. Agric. Food Chem. 49: 2465-2471 (2001)

    CAS  Article  Google Scholar 

  22. Padula D, Greenfield H, Cunningham J, Kiermeier A, Mcleod C. Australian seafood compositional profiles: a pilot study. Vitamin D and mercury content. Food Chem. 193: 106-111 (2015)

    Article  Google Scholar 

  23. Park E, Song KB. Isolation of angiotensin converting enzyme inhibitors from pig blood. Agric. Chem. Biotechnol. 40: 39-42 (1997)

    CAS  Google Scholar 

  24. Qian Z, Jung W, Byun H, Kim S. Protective effect of an antioxidative peptide purified from gastrointestinal digests of oyster, Crassostrea gigas against free radical induced DNA damage. Bioresour. Technol. 99: 3365-3371 (2008)

    CAS  Article  Google Scholar 

  25. Ren W, Li Y, Geng X, Wang S, Guo J. Isolation of angiotensin-converting enzyme inhibitor from enzymatic hydrolysate of hog bone collagen. Chin. Biochem. J. 12: 693-697 (1996)

    CAS  Google Scholar 

  26. Roskar R, Simoncic Z, Gartner A, Kmetec V. Stability of new potential ACE inhibitor in the aqueous solutions of different pH. J. Pharm. Biomed. Anal. 49: 295-303 (2009)

    CAS  Article  Google Scholar 

  27. Singh TK, Øiseth SK, Lundin L, Day L. Influence of heat and shear induced protein aggregation on the in vitro digestion rate of whey proteins. Food Funct. 5: 2686-2698 (2014)

    CAS  Article  Google Scholar 

  28. Tian L, Liu J, Ma L, Zhang L, Wang S,Yan E, Zhu H. Isolation and purification of antioxidant and ACE-inhibitory peptides from Yak (Bos grunniens) skin. J. Food Process. Preserv. 41(5): 1-6 (2017)

    CAS  Article  Google Scholar 

  29. Tu M, Feng L, Wang Z, Qiao M, Shahidi F, Lu W, Du M. Sequence analysis and molecular docking of antithrombotic peptides from casein hydrolysate by trypsin digestion. J. Funct. Foods 32: 313-323 (2017)

    CAS  Article  Google Scholar 

  30. Tu M, Wang C, Chen C, Zhang R, Liu H, Lu W, Jiang L, Du M. Identification of a novel ACE-inhibitory peptide from casein and evaluation of the inhibitory mechanisms. Food Chem. 256: 98-104 (2018)

    CAS  Article  Google Scholar 

  31. Wang J, Hu J, Cui J, Bai X, Du Y, Miyaguchi Y, Lin B. Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats. Food Chem. 111: 302-308 (2008)

    CAS  Article  Google Scholar 

  32. Wang YK, He HL, Wang GF, Wu H, Zhou BC, Chen XL, Zhang YZ. Oyster (Crassostrea gigas) hydrolysates produced on a plant scale have antitumor activity and immunostimulating effects in BALB/c mice. Mar. Drugs 8: 255-268 (2010)

    CAS  Article  Google Scholar 

  33. Yadzir ZHM, Misnan R, Bakhtiar F, Abdullah N, Murad S. Tropomyosin, the major tropical oyster Crassostrea belcheri allergen and effect of cooking on its allergenicity. Allergy Asthma Clin. Immunol. 11: 30 (2015)

    Article  Google Scholar 

  34. Yu Y, Fan F, Wu D, Yu C, Wang Z, Du M. Antioxidant and ACE inhibitory activity of enzymatic hydrolysates from Ruditapes philippinarum. Molecules 23: 1189 (2018)

    Article  Google Scholar 

  35. Zhao H, Zhu B, Zhou D, Liu Z, Qin L, Jiang X, Response surface methodology optimization of enzymatic hydrolysis of oyster. J. Dalian Univ. Technol. 29: 421-425 (2010)

    CAS  Google Scholar 

  36. Zielbauer BI, Franz J, Viezens B, Vilgis TA. Physical aspects of meat cooking: time dependent thermal protein denaturation and water loss. Food Biophys. 11: 34-42 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31771926), the State Key Research and Development Plan “Modern Food Processing and Food Storage and Transportation Technology and Equipment” (2018YFD0400105).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ming Du.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 73 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Zhao, F., Chen, H. et al. Heat treatments of peptides from oyster (Crassostrea gigas) and the impact on their digestibility and angiotensin I converting enzyme inhibitory activity. Food Sci Biotechnol 29, 961–967 (2020). https://doi.org/10.1007/s10068-020-00736-4

Download citation

Keywords

  • Oyster
  • Peptides
  • Molecular weight
  • Digestibility
  • ACE