GC–MS metabolomics revealed protocatechuic acid as a cytotoxic and apoptosis-inducing compound from black rice brans

Abstract

GC–MS metabolomics was used to discriminate the phytochemicals profile of Indonesian white, red, and black rice brans, and Japanese white rice brans. This technique was used for the first time to identify compounds in rice brans having cytotoxic activity against WiDr colon cancer cells. Orthogonal Projection to the Latent Structure (OPLS) analysis showed that protocatechuic acid (PA) was a discriminating factor found in black rice brans which strongly correlated with its cytotoxicity (IC50 8.53 ± 0.26 µM). Real time-PCR data demonstrated that PA cytotoxicity at different concentrations (1, 5, 10, 25 and 50 µg/mL) was mediated through different pathways. Bcl-2 expression was downregulated at all tested concentrations indicating apoptosis stimulation. At 1–10 ppm concentration, PA activated both intrinsic and extrinsic apoptosis pathways since the expression of p53, Bax, caspase-8, and caspase-9 were upregulated. At a higher dose (25 and 50 µg/mL), PA possibly involved in pyroptosis-mediated pro-inflammatory cell death by upregulating the expression of caspase-1 and caspase-7.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Banjerdpongchai R, Wudtiwai B, Sringarm K. Cytotoxic and apoptotic-inducing effects of purple rice extracts and chemotherapeutic drugs on human cancer cell lines. Asian Pac. J. Cancer Prev. 14: 6541-6548 (2014)

    Article  Google Scholar 

  2. Carballeira NM, Lopez MR. On the isolation of 2-hydroxydocosanoic and 2-hydroxytricosanoic acids from the marine spongeAmphimedon compressa. Lipids 24: 89-91 (1989)

    CAS  Article  Google Scholar 

  3. Chatthongpisut R, Schwartz SJ, Yongsawatdigul J. Antioxidant activities and antiproliferative activity of Thai purple rice cooked by various methods on human colon cancer cells. Food Chem. 188: 99-105 (2015)

    CAS  Article  Google Scholar 

  4. Eriksson L, Rosén J, Johansson E, Trygg J. Orthogonal PLS (OPLS) modeling for improved analysis and interpretation in drug design. Mol. Inform. 31(6–7): 14-419 (2012)

    Google Scholar 

  5. de Falco B, Fiore A, Bochicchio R, Amato M, Lanzotti V. Metabolomic analysis by UAE-GC MS and antioxidant activity of Salvia hispanica (L.) seeds grown under different irrigation regimes. Ind. Crops Prod. 112: 584-592 (2018)

    Article  Google Scholar 

  6. Fulda S, Friesen C, Los M, Scaffidi C, Mier W, Benedict M, Nuñez G, Krammer PH, Peter ME, Debatin KM. Betulinic acid triggers CD95 (APO-1/Fas)- and p53-independent apoptosis via activation of caspases in neuroectodermal tumors. Cancer Res. 57(21): 4956-64 (1997)

    CAS  PubMed  Google Scholar 

  7. Garcia A, Barbas C. Gas chromatography–mass spectrometry (GC–MS)-based metabolomics. pp.191-204. In: Methods in molecular biology. Metz TA (ed). Humana Press, Totowa, NJ, USA (2011)

  8. Henderson AJ, Ollila CA, Kumar A, Borresen EC, Raina K, Agarwal R, Ryan EP. Chemopreventive properties of dietary rice bran: current status and future prospects. Adv. Nutr. Int. Rev. J. 3: 643-653 (2012)

    CAS  Article  Google Scholar 

  9. http://www.atcc.org/products/all/CCL-218.aspx#characteristics

  10. Iqbal S, Bhanger MI, Anwar F. Antioxidant properties and components of some commercially available varieties of rice bran in Pakistan. Food Chem. 93: 265-272 (2005)

    CAS  Article  Google Scholar 

  11. Javadi N, Abas F, Hamid AA, Simoh S, Shaari K, Ismail IS, Mediani A, Khatib A. GC–MS-based metabolite profiling of Cosmos caudatus leaves possessing alpha-glucosidase inhibitory activity. J Food Sci. 79(6): C1130-C1136 (2014)

    CAS  Article  Google Scholar 

  12. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J. Clin. 61: 69-90 (2011)

    Article  Google Scholar 

  13. Kivilompolo M, Obůrka V, Hyötyläinen T. Comparison of GC–MS and LC–MS methods for the analysis of antioxidant phenolic acids in herbs. Anal. Bioanal. Chem. 388: 881-887 (2007)

    CAS  Article  Google Scholar 

  14. Kong CKL, Lam WS, Chiu LCM, Ooi VEC, Sun SSM, Wong Y-S. A rice bran polyphenol, cycloartenyl ferulate, elicits apoptosis in human colorectal adenocarcinoma SW480 and sensitizes metastatic SW620 cells to TRAIL-induced apoptosis. Biochem. Pharmacol. 77(9): 1487-1496 (2009)

    CAS  Article  Google Scholar 

  15. Eriksson L, Byrne T, Johansson E, Trygg J, Vikström C. Multi- and megavariate data analysis. Basic, Principle and Application. Third Revised Edition. Umetrics Academy Umeå, Sweden. pp 362-370 (2013)

  16. Lamkanfi M, Kanneganti T-D. Caspase-7: a protease involved in apoptosis and inflammation. Int. J. Biochem. Cell Biol. 42: 21-24 (2010)

    CAS  Article  Google Scholar 

  17. Laokuldilok T, Shoemaker CF, Jongkaewwattana S, Tulyathan V. Antioxidants and antioxidant activity of several pigmented rice brans. J. Agric. Food Chem. 59(1): 193-199 (2011)

    CAS  Article  Google Scholar 

  18. Lerma-García MJ, Herrero-Martínez JM, Simó-Alfonso EF, Mendonça CRB, Ramis-Ramos G. Composition, industrial processing and applications of rice bran γ-oryzanol. Food Chem.115: 389-404 (2009)

    Article  Google Scholar 

  19. Levine AJ. p53, the cellular gatekeeper for growth and division. Cell 88: 323-331 (1997)

    CAS  Article  Google Scholar 

  20. Lin HH, Chen JH, Chou FP, Wang CJ. Protocatechuic acid inhibits cancer cell metastasis involving the down-regulation of Ras/Akt/NF-κB pathway and MMP-2 production by targeting RhoB activation. Br. J. Pharmacol. 162: 237-254 (2011)

    CAS  Article  Google Scholar 

  21. Nam SH, Choi SP, Kang MY, Kozukue N, Friedman M. Antioxidative, antimutagenic, and anticarcinogenic activities of rice bran extracts in chemical and cell assays. J. Agric. Food Chem. 53: 816-822 (2005)

    CAS  Article  Google Scholar 

  22. Park HY, Yu AR, Choi IW, Hong HD, Lee KW, Choi HD. Immunostimulatory effects and characterization of a glycoprotein fraction from rice bran. Int. Immunopharmacol. 17(2): 191-197 (2013)

    CAS  Article  Google Scholar 

  23. Perez-Ternero C, Werner CM, Nickel AG, Herrera MD, Motilva MJ, Böhm M, de Sotomayor MA, Laufs U. Ferulic acid, a bioactive component of rice bran, improves oxidative stress and mitochondrial biogenesis and dynamics in mice and in human mononuclear cells. J. Nutr. Biochem. 48: 51-61 (2017)

    CAS  Article  Google Scholar 

  24. Premakumara GAS, Abeysekera WKSM, Ratnasooriya WD, Chandrasekharan NV, Bentota AP. Antioxidant, anti-amylase and anti-glycation potential of brans of some Sri Lankan traditional and improved rice (Oryza sativa L.) varieties. J. Cereal Sci. 58: 451-456 (2013)

    CAS  Article  Google Scholar 

  25. Robbins RJ. Phenolic acids in foods: an overview of analytical methodology. J. Agric. Food Chem. 51: 2866-2887 (2003)

    CAS  Article  Google Scholar 

  26. Sen S, D’Incalci M. Apoptosis biochemical events and relevance to cancer chemotherapy. FEBS Lett. 307(1): 122-127 (1992)

    CAS  Article  Google Scholar 

  27. Shalini S, Dorstyn L, Dawar S, Kumar S. Old, new and emerging functions of caspases. Cell Death Differ. 22: 526-539 (2015)

    CAS  Article  Google Scholar 

  28. da Silva RAC, de Lemos TLG, Ferreira DA, Monte FJQ. Ximenia americana chemical and spectral studies of extracts of seeds: analysis of drimethylsilyl derivatives by gas chromatography and mass spectrometry. Am. J. Anal. Chem. 07(02): 192-202 (2016)

    Article  Google Scholar 

  29. Swamy MK, Arumugam G, Kaur R, Ghasemzadeh A, Yusoff MM, Sinniah UR. GC–MS-based metabolite profiling, antioxidant and antimicrobial properties of different solvent extracts of Malaysian Plectranthus amboinicus leaves. Evid. Based Complement. Altern. Med. 2017: 1-10 (2017)

    Article  Google Scholar 

  30. Tanaka T, Tanaka T, Tanaka M. Potential cancer chemopreventive activity of protocatechuic acid. J. Exp. Clin. Med. 3: 27-33 (2011)

    CAS  Article  Google Scholar 

  31. Wang L, Li Y, Zhu L, Yin R, Wang R, Luo X, Li Y, Li Y, Chen Z. Antitumor activities and immunomodulatory of rice bran polysaccharides and its sulfates in vitro. Int. J. Biol. Macromol. 88: 424-432 (2016)

    CAS  Article  Google Scholar 

  32. Xie Z, Guo Z, Wang Y, Lei J, Yu J. Protocatechuic acid inhibits the growth of ovarian cancer cells by inducing apoptosis and autophagy. Phyther. Res. 32: 2256-2263 (2018)

    CAS  Article  Google Scholar 

  33. Yin M-C, Lin C-C, Wu H-C, Tsao S-M, Hsu C-K. Apoptotic effects of protocatechuic acid in human breast, lung, liver, cervix, and prostate cancer cells: potential mechanisms of action. J. Agric. Food Chem. 57: 6468-6473 (2009)

    CAS  Article  Google Scholar 

  34. Yuliana ND, Budijanto S, Verpoorte R, Choi YH. NMR metabolomics for identification of adenosine A1 receptor binding compounds from Boesenbergia rotunda rhizomes extract. J. Ethnopharmacol. 150: 95-99 (2013)

    CAS  Article  Google Scholar 

  35. Yulianto W, Andarwulan N, Giriwono PE, Pamungkas J. HPLC-based metabolomics to identify cytotoxic compounds from Plectranthus amboinicus (Lour.) Spreng against human breast cancer MCF-7 Cells. J. Chromatogr. B 1039: 28-34 (2016)

    CAS  Article  Google Scholar 

  36. Zarei I, Brown DG, Nealon NJ, Ryan EP. Rice bran metabolome contains amino acids, vitamins & cofactors, and phytochemicals with medicinal and nutritional properties. Rice 10: 24 (2017)

    Article  Google Scholar 

  37. Zarei I, Luna E, Leach J, McClung A, Vilchez S, Koita O, Ryan E, Zarei I, Luna E, Leach JE, McClung A, Vilchez S, Koita O, Ryan EP. Comparative rice bran metabolomics across diverse cultivars and functional rice gene–bran metabolite relationships. Metabolites 8: 63 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Ministry of Research and Higher Education Republic of Indonesia is gratefully acknowledged for partially funding this research through International Collaboration Research scheme with contract number 631/IT3.11/PL/2015.

Author information

Affiliations

Authors

Contributions

NDY: writing the manuscript, responsible for multivariate data analysis. MZT: responsible for sample extraction and in vitro experiment, proof read the manuscript. AK: responsible for GC–MS measurement, proof read the manuscript. FL: responsible for RT PCR experiment, proof read the manuscript. S: checking and read carefully the manuscript for any inappropriate content and misspelling.

Corresponding author

Correspondence to Nancy Dewi Yuliana.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10068_2019_725_MOESM1_ESM.pptx

Fig. S1 Representative chromatograms of rice brans. Putative compound were numbered from 1 to 10 and determined by comparing with the compounds data base in NIST-14 Library which have the highest similarity percentage (1 = Protocatechuic acid, 2 = Fructose, 3 = Glucose, 4 = Hexanoic acid, 5 = Inositol, 6 = 9,12 - Octadecadienoic acid, 7 = Oleic acid, 8 = Octadecanoic acid, 9 = α-D-Glucopyranoside, 10 = β-sitosterol (PPTX 504 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuliana, N.D., Tuarita, M.Z., Khatib, A. et al. GC–MS metabolomics revealed protocatechuic acid as a cytotoxic and apoptosis-inducing compound from black rice brans. Food Sci Biotechnol 29, 825–835 (2020). https://doi.org/10.1007/s10068-019-00725-2

Download citation

Keywords

  • Rice brans
  • Cytotoxicity
  • Apoptosis
  • Metabolomics
  • Protocatechuic acid