Enzymatic modification of daidzin using heterologously expressed amylosucrase in Bacillus subtilis

Abstract

Amylosucrases (ASase, EC 2.4.1.4) from Deinococcus geothermalis (DGAS) and Neisseria polysaccharea (NPAS) were heterologously expressed in Bacillus subtilis. While DGAS was successfully expressed, NPAS was not. Instead, NPAS was expressed in Escherichia coli. Recombinant DGAS and NPAS were purified using nickel-charged affinity chromatography and employed to modify daidzin to enhance its water solubility and bioavailability. Analyses by LC/MS revealed that the major products of transglycosylation using DGAS were daidzein diglucoside and daidzein triglucoside, whereas that obtained by NPAS was only daidzein diglucoside. The optimal bioconversion conditions for daidzein triglucoside, which was predicted to have the highest water-solubility among the daidzin derivatives, was determined to be 4% (w/v) sucrose and 250 mg/L daidzin in sodium phosphate pH 7.0, with a reaction time of 12 h. Taken together, we suggest that the yield and product specificity of isoflavone daidzin transglycosylation may be modulated by the source of ASase and reaction conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Choi CH, Kim SH, Jang JH, Park JT, Shim JH, Kim YW, Park KH. Enzymatic synthesis of glycosylated puerarin using maltogenic amylase from Bacillus stearothermophilus expressed in Bacillus subtilis. J. Sci. Food Agric. 90: 1179–1184 (2010)

    CAS  Article  Google Scholar 

  2. Cho HK, Kim HH, Seo DH, Jung JH, Park JH, Baek NI, Kim MJ, Yoo SH, Cha J, Kim YR. Biosynthesis of (+)-catechin glycosides using recombinant amylosucrase from Deinococcus geothermalis DSM 11300. Enzyme Microb. Technol. 49: 246–253 (2011)

    CAS  Article  Google Scholar 

  3. Delmonte P, Perry J, Rader JI. Determination of isoflavones in dietary supplements containing soy, red clover and kudzu: extraction followed by basic or acid hydrolysis. J. Chromatogr. A 1107: 59–69 (2006)

    CAS  Article  Google Scholar 

  4. De Montalk GP, Remaud-Simeon M, Willemot R, Planchot V, Monsan P. Sequence analysis of the gene encoding amylosucrase from Neisseria polysaccharea and characterization of the recombinant enzyme. J. Bacteriol. 181: 375–381 (1999)

    Article  Google Scholar 

  5. Dillard CJ, German JB. Phytochemicals: nutraceuticals and human health. J. Sci. Food Agric. 80: 1744–1756 (2000)

    CAS  Article  Google Scholar 

  6. Iwashina T. The structure and distribution of the flavonoids in plants. J. Plant Res. 113: 287–299 (2014)

    Article  Google Scholar 

  7. Jung JH, Seo DH, Ha SJ, Song MC, Cha J, Yoo SH, Kim TJ, Baek NI, Baik MY, Park CS. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohydr. Res. 344: 1612–1619 (2009)

    CAS  Article  Google Scholar 

  8. Kim MD, Jung DH, Seo DH, Jung JH, Seo EJ, Baek NI, Yoo SH, Park CS. Acceptor specificity of amylosucrase from Deinococcus radiopugnans and its application for synthesis of rutin derivatives. J. Microbiol. Biotechnol. 26: 1845–1854 (2016)

    CAS  Article  Google Scholar 

  9. Kim MD, Seo DH, Jung JH, Jung DH, Joe MH, Lim S, Lee JH, Park CS. Molecular cloning and expression of amylosucrase from highly radiation-resistant Deinococcus radiopugnans. Food Sci. Biotechnol. 23: 2007–2012 (2014)

    CAS  Article  Google Scholar 

  10. Ko JH, Kim BG, Ahn JH. Glycosylation of flavonoids with a glycosyltransferase from Bacillus cereus. FEMS Microbiol. Lett. 258: 263–268 (2006)

    CAS  Article  Google Scholar 

  11. Ko KP. Isoflavones: chemistry, analysis, functions and effects on health and cancer. Asian Pac. J. Cancer Prev. 15: 7001–7010 (2014)

    Article  Google Scholar 

  12. Kulkarni YA, Garud MS, Oza MJ, Barve KH, Gaikwad AB. Chapter 5—Diabetes, diabetic complications, and flavonoids A2. pp. 77–104. In: Fruits, vegetables, and herbs. Watson R and Preedy VR (eds). Academic Press, Inc., Elsevier, NY, USA.

    Google Scholar 

  13. Lee JH, Doo EH, Kwon DY, Park JB. Functionalization of isoflavones with enzymes. Food Sci. Biotechnol. 17: 228–233 (2008)

    CAS  Google Scholar 

  14. Li D, Park JH, Park JT, Park CS, Park KH. Biotechnological production of highly soluble daidzein glycosides using Thermotoga maritima maltosyltransferase. J. Agric. Food Chem. 52: 2561–2567 (2004a)

    CAS  Article  Google Scholar 

  15. Li D, Park SH, Shim JH, Lee HS, Tang SY, Park CS, Park KH. In vitro enzymatic modification of puerarin to puerarin glycosides by maltogenic amylase. Carbohydr. Res. 339: 2789–2797 (2004b)

    CAS  Article  Google Scholar 

  16. Lundemo P. Transglycosylation by glycoside hydrolases-production and modification of alkyl glycosides. PhD thesis, Lund University, Lund, Scania, Sweden (2015)

  17. Park HS, Choi KH, Park YD, Park CS, Cha JH. Enzymatic synthesis of polyphenol glycosides by amylosucrase. J. Life Sci. 21: 1631–1635 (2011)

    Article  Google Scholar 

  18. Park HS, Kim JE, Park JH, Baek NI, Park CS, Lee HS, Cha JH. Bioconversion of piceid to piceid glucoside using amylosucrase from Alteromonas macleodii deep ecotype. J. Microbiol. Biotechnol. 22: 1698–1704 (2012)

    CAS  Article  Google Scholar 

  19. Plaza M, Pozzo T, Liu J, Gulshan Ara KZ, Turner C, Nordberg Karlsson E. Substituent effects on in vitro antioxidizing properties, stability, and solubility in flavonoids. J. Agric. Food Chem. 62: 3321–3333 (2014)

    CAS  Article  Google Scholar 

  20. Polizzi M, Bommarius A, Broering J, Chaparro-Riggers J. Stability of biocatalysts. Curr. Opin. Chem. Biol. 11: 220–225 (2007)

    CAS  Article  Google Scholar 

  21. Rezvani AH, Overstreet DH., Perfumi M., Massi M. Plant derivatives in the treatment of alcohol dependency. Pharmacol. Biochem. Behav. 75: 593–606 (2003)

    CAS  Article  Google Scholar 

  22. Seo DH, Jung JH, Ha SJ, Song MC, Cha JH, Yoo SH, Kim TJ, Baek NI, Park CS. Highly selective biotransformation of arbutin to arbutin-α-glucoside using amylosucrase from Deinococcus geothermalis DSM 11300. J. Mol. Catal. B-Enzym. 60: 113–118 (2009)

    CAS  Article  Google Scholar 

  23. Seo DH, Jung JH, Ha SJ, Yoo SH, Kim TJ, Cha JH, Park CS. Molecular cloning of the amylosucrase gene from a moderate thermophilic bacterium Deinococcus geothermalis and analysis of its dual enzyme activity. Vol. I, pp. 125–140. In: Carbohydrate-active enzymes. Park KH (ed). Academic Press, Inc., Elsevier, NY, USA (2008)

    Google Scholar 

  24. Seo DH, Jung JH, Ha SJ, Cho HK, Jung DH, Kim TJ, Baek NI, Yoo SH, Park CS. High-yield enzymatic bioconversion of hydroquinone to α-arbutin, a powerful skin lightening agnet, by amylosucrase. Appl. Microbiol. Biotechnol. 94: 1189–1197 (2012)

    CAS  Article  Google Scholar 

  25. Seo DH, Jung JH, Jung DH, Park SY, Yoo SH, Kim YR, Park CS. An unusual chimeric amylosucrase generated by domain-swapping mutagenesis. Enzyme Microb. Technol. 86: 7–16 (2016)

    CAS  Article  Google Scholar 

  26. Shimoda K, Hamada H. Production of hesperetin glycosides by Xanthomonas campestris and cyclodextrin glucanotransferase and their anti-allergic activities. Nutrients 2: 171–180 (2010a)

    CAS  Article  Google Scholar 

  27. Shimoda K, Hamada H. Synthesis of β-maltooligosaccharides of glycitein and daidzein and their anti-oxidant and anti-allergic activities. Molecules 15: 5153–5161 (2010b)

    CAS  Article  Google Scholar 

  28. Shimoda K, Hamada H, Hamada H. Synthesis of xylooligosaccharides of daidzein and their anti-oxidant and anti-allergic activities. Int. J. Mol. Sci. 12: 5616–5625 (2011)

    CAS  Article  Google Scholar 

  29. Thrane M, Paulsen PV, Orcutt MW, Krieger TM. Chapter 2—Soy Protein: Impacts, Production, and Applications A2. pp. 23-45. In: Sustainable Protein Sources. Wanasundara JPD, Scanlin L (eds). Academic Press, Inc., Elsevier, NY, USA (2017)

    Google Scholar 

  30. Vacek J, Klejdus B, Lojková L, Kubán V. Current trends in isolation, separation, determination and identification of isoflavones: a review. J. Sep. Sci. 31: 2054–2067 (2008)

    CAS  Article  Google Scholar 

  31. Westers L, Westers H, Quax WJ. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim. Biophys. Acta-Mol. Cell. 1694: 299–310 (2004)

    CAS  Article  Google Scholar 

  32. Wu L and Birch RG. Characterization of Pantoea dispersa UQ68 J: producer of a highly efficient sucrose isomerase for isomaltulose biosynthesis. J. Appl. Microbiol. 97: 93–103 (2004)

    Article  Google Scholar 

  33. Wu L and Birch RG. Characterization of the highly effieient sucrose isomerase from Pantoea dispersa UQ68J and cloning of the sucrose isomerase gene. Appl. Environ. Microbiol. 71: 1581–1590 (2005)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MEST) (No. 2017R1A2B4004218).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cheon-Seok Park.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, E., Rha, C., Jung, Y.S. et al. Enzymatic modification of daidzin using heterologously expressed amylosucrase in Bacillus subtilis. Food Sci Biotechnol 28, 165–174 (2019). https://doi.org/10.1007/s10068-018-0453-7

Download citation

Keywords

  • Amylosucrase
  • Deinococcus geothermalis
  • Daidzin
  • Transglycosylation
  • Bacillus subtilis