Skip to main content
Log in

Fucoidan improves the structural integrity and the molecular stability of β-lactoglobulin

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

β-lactoglobulin (β-lg) was covalently bonded with fucoidan through Maillard reaction at 60 °C for 96 h under 79% RH condition. The molecular characters of the conjugate were investigated using fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), and circular dichroism (CD) spectroscopy. And, its thermal properties, surface activity, and zeta-potential were compared with intact β-lg, β-lg-fucoidan mixture, and fucoidan under different pH conditions. AFM indicated that the conjugate was nano-structured, regular spherical-shaped and generally large sized compared to β-lg-fucoidan mixture. CD spectra and FT-IR showed that tertiary structure of β-lg slightly unfolded, but little change in secondary structure occurred. This explained that glycation under Maillard condition resulted in a molten globule state of β-lg. Differential scanning calorimetry (DSC) data exhibited that fucoidan shifted the temperature of phase transition and improved thermal stability of β-lg molecule. In addition, the conjugate prominently decreased the surface tension with pH-dependency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME. Essentials of glycobiology. Cold Spring Harbor Laboratory Press, NY, USA. pp. 115–127 (2009)

    Google Scholar 

  2. Horvat Š, Jakas A. Peptide and amino acid glycation: new insights into the Maillard reaction. J. Pept. Sci. 10: 119–137 (2004)

    Article  CAS  Google Scholar 

  3. Li Y, Lu F, Luo C, Chen Z, Mao J, Shoemaker C, Zhong F. Functional properties of the Maillard reaction products of rice protein with sugar. Food Chem. 117: 69–74 (2009)

    Article  CAS  Google Scholar 

  4. Hemmingson JA, Falshaw R, Furneaux R, Thompson K. Structure and Antiviral Activity of the Galactofucan Sulfates Extracted from UndariaPinnatifida (Phaeophyta). J. Appl. Phycol. 18: 185–193 (2006)

    Article  CAS  Google Scholar 

  5. Kim D-Y, Shin W-S. Roles of fucoidan, an anionic sulfated polysaccharide on BSA-stabilized oil-in-water emulsion. Macromol Res. 17: 128–132 (2009)

    Article  CAS  Google Scholar 

  6. Kim D-Y, Shin W-S. Functional improvements in bovine serum albumin–fucoidan conjugate through the Maillard reaction. Food Chem. 190: 974–981 (2016)

    Article  CAS  Google Scholar 

  7. Kim D-Y, Shin W-S, Hong W-S. The unique behaviors of biopolymers, BSA and fucoidan, in a model emulsion system under different pH circumstances. Macromol Res. 18: 1103–1108 (2010)

    Article  CAS  Google Scholar 

  8. Tissot B, Montdargent B, Chevolot L, Varenne A, Descroix S, Gareil P, Daniel R. Interaction of fucoidan with the proteins of the complement classical pathway. Biochim. Biophys. Acta, Proteins Proteomics. 1651: 5–16 (2003)

    CAS  Google Scholar 

  9. Roefs P, de Kruif KG. Association behavior of native ß-lactoglobulin. Biopolymers. 49: 11–20 (1999)

    Article  Google Scholar 

  10. Morgan F, Léonil J, Mollé D, Bouhallab S. Modification of bovine β-lactoglobulin by glycation in a powdered state or in an aqueous solution: effect on association behavior and protein conformation. J. Agric. Food Chem. 47: 83–91 (1999)

    Article  CAS  Google Scholar 

  11. Rada-Mendoza M, Villamiel M, Molina E, Olano A. Effects of heat treatment and high pressure on the subsequent lactosylation of β-lactoglobulin. Food Chem. 99: 651–655 (2006)

    Article  CAS  Google Scholar 

  12. Kim D-Y, Shin W-S. Characterisation of bovine serum albumin–fucoidan conjugates prepared via the Maillard reaction. Food Chem. 173: 1–6 (2015)

    Article  CAS  Google Scholar 

  13. Liu G, Zhong Q. Thermal aggregation properties of whey protein glycated with various saccharides. Food Hydrocoll. 32: 87–96 (2013)

    Article  CAS  Google Scholar 

  14. Zhang X, Qi J-R, Li K-K, Yin S-W, Wang J-M, Zhu J-H, Yang X-Q. Characterization of soy β-conglycinin–dextran conjugate prepared by Maillard reaction in crowded liquid system. Food Res Int. 49: 648–654 (2012)

    Article  CAS  Google Scholar 

  15. Jones OG, Lesmes U, Dubin P, McClements DJ. Effect of polysaccharide charge on formation and properties of biopolymer nanoparticles created by heat treatment of β-lactoglobulin–pectin complexes. Food Hydrocoll. 24: 374–383 (2010)

    Article  CAS  Google Scholar 

  16. Greenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc. 1: 2876–2890 (2006)

    Article  CAS  Google Scholar 

  17. Kelly SM, Price NC. The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci. 1: 349–384 (2000)

    Article  CAS  Google Scholar 

  18. Chevalier F, Chobert J, Dalgalarrondo M, Choiset Y, Haertle T. Maillard glycation of b-lactoglobulin induces conformation changes. Nahrung. 46: 58–63 (2002)

    Article  CAS  Google Scholar 

  19. Ngarize S, Herman H, Adams A, Howell N. Comparison of changes in the secondary structure of unheated, heated, and high-pressure-treated β-lactoglobulin and ovalbumin proteins using Fourier transform Raman spectroscopy and self-deconvolution. J. Agric. Food Chem. 52: 6470–6477 (2004)

    Article  CAS  Google Scholar 

  20. Cooper E, Knutson K. Fourier transform infrared spectroscopy investigations of protein structure. Pharm Biotechnol. 7: 101–143 (1995)

    Article  CAS  Google Scholar 

  21. Liu Q, Kong B, Han J, Sun C, Li P. Structure and antioxidant activity of whey protein isolate conjugated with glucose via the Maillard reaction under dry-heating conditions. Food Struct. 1: 145–154 (2014)

    Article  Google Scholar 

  22. van der Ven C, Muresan S, Gruppen H, de Bont DB, Merck KB, Voragen AG. FTIR spectra of whey and casein hydrolysates in relation to their functional properties. J. Agric. Food Chem. 50: 6943–6950 (2002)

    Article  Google Scholar 

  23. Curley DM, Kumosinski TF, Unruh JJ, Farrell HM. Changes in the Secondary Structure of Bovine Casein by Fourier Transform Infrared Spectroscopy: Effects of Calcium and Temperature. J. Dairy Sci. 81: 3154–3162 (1998)

    Article  CAS  Google Scholar 

  24. Liu Y, Zhao G, Zhao M, Ren J, Yang B. Improvement of functional properties of peanut protein isolate by conjugation with dextran through Maillard reaction. Food Chem. 131: 901-906 (2012)

    Article  CAS  Google Scholar 

  25. Boye J, Alli I. Thermal denaturation of mixtures of α-lactalbumin and β-lactoglobulin: a differential scanning calorimetric study. Food Res Int. 33: 673–682 (2000)

    Article  CAS  Google Scholar 

  26. Choi S-M, Mine Y, Ma C-Y. Characterization of heat-induced aggregates of globulin from common buckwheat (Fagopyrum esculentum Moench). Int J Biol Macromol. 39: 201–209 (2006)

    Article  CAS  Google Scholar 

  27. Shin W-S, Hirose M. Thiol-dependent gelation of the domain I-truncated fragment of bovine serum albumin. Biosci Biotechnol Biochem. 59: 817–821 (1995)

    Article  CAS  Google Scholar 

  28. Nishii I, Kataoka M, Tokunaga F, Goto Y. Cold denaturation of the molten globule states of apomyoglobin and a profile for protein folding. Biochemistry. 33: 4903–4909 (1994)

    Article  CAS  Google Scholar 

  29. Xie D, Bhakuni V, Freire E. Calorimetric determination of the energetics of the molten globule intermediate in protein folding: apo-. alpha.-lactalbumin. Biochemistry. 30: 10673–10678 (1991)

    Article  CAS  Google Scholar 

  30. Yoshimura M, Takaya T, Nishinari K. Effects of xyloglucan on the gelatinization and retrogradation of corn starch as studied by rheology and differential scanning calorimetry. Food Hydrocoll. 13: 101–111 (1999)

    Article  CAS  Google Scholar 

  31. Jones O, Decker EA, McClements DJ. Thermal analysis of β-lactoglobulin complexes with pectins or carrageenan for production of stable biopolymer particles. Food Hydrocoll. 24: 239–248 (2010)

    Article  CAS  Google Scholar 

  32. Ibanoglu E. Effect of hydrocolloids on the thermal denaturation of proteins. Food Chem. 90: 621–626 (2005)

    Article  CAS  Google Scholar 

  33. Sakurai K, Konuma T, Yagi M, Goto Y. Structural dynamics and folding of β-lactoglobulin probed by heteronuclear NMR. Biochim. Biophys. Acta, Gen. Subj. 1790: 527-537 (2009)

    Article  CAS  Google Scholar 

  34. Mezzenga R, Fischer P. The self-assembly, aggregation and phase transitions of food protein systems in one, two and three dimensions. Rep. Prog. Phys. 76: 046601 (2013)

    Article  Google Scholar 

  35. Kehoe J, Foegeding E. The characteristics of heat-induced aggregates formed by mixtures of β-lactoglobulin and β-casein. Food Hydrocoll. 39: 264–271 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) grant funded by the Ministry of Education (No. 2015R1D1A1A09061228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weon-Sun Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, HW., Kim, DY. & Shin, WS. Fucoidan improves the structural integrity and the molecular stability of β-lactoglobulin. Food Sci Biotechnol 27, 1247–1255 (2018). https://doi.org/10.1007/s10068-018-0375-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-018-0375-4

Keywords

Navigation