Inactivation of Salmonella Typhimurium in fresh cherry tomatoes using combined treatment of UV–TiO2 photocatalysis and high hydrostatic pressure

  • Hafiz Muhammad Shahbaz
  • Sanghun Kim
  • Jeong Un Kim
  • Daseul Park
  • Mijin Lee
  • Dong-Un Lee
  • Jiyong Park
Article
  • 29 Downloads

Abstract

The antibacterial efficacy of UV–TiO2 photocatalysis pre-washing in a water-assisted system (UVT, 4.5 mW/cm2, 5–15 min) and high hydrostatic pressure (HHP, 300–500 MPa, 1 min at 25 °C) post-package combined treatment was evaluated against Salmonella Typhimurium inoculated onto whole cherry tomato surfaces and compared with chlorine disinfection (200 ppm). An air pump was fitted at the bottom of UVT reactor to create turbulent flow for rotation of fruits for uniform disinfection. UVT–HHP combined treatment at 500 MPa achieved bacterial reduction of more than 5 log via a synergistic effect, compared with chlorine disinfection. Lycopene and total phenolic contents and antioxidant activities were not significantly changed in tomatoes after any treatment. UVT–HHP combined treatment did not affect the surface color but caused softness in tomatoes. UVT pre-washing followed by HHP post-package treatment can be the effective intervention strategy alternative to conventional chlorine disinfection for production of ready-to-eat (RTE) fresh cherry tomatoes.

Keywords

Salmonella Typhimurium Cherry tomato UV–TiO2 photocatalysis High hydrostatic pressure 

Notes

Acknowledgements

This research was supported by the High Value-added Food Technology Development Program, Ministry of Agriculture, Food and Rural Affairs, South Korea.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Bartz JA, Yuk HJ, Mahovic MJ, Warren BR, Sreedharan A, Schneider KR. Internalization of Salmonella enterica by tomato fruit. Food Control 55: 141–150 (2015)CrossRefGoogle Scholar
  2. 2.
    FDA. FDA’s team tomato fights contamination. Available from: http://www.fda.gov/download/ForConsumers/ConsumerUpdates/UCM359832.pdf. Accessed Sep. 06, 2016.
  3. 3.
    Guerreiro D, Madureira J, Silva T, Melo R, Santos PMP, Ferreira A, Trigo MJ, Falcão AN, Margaça FMA, Verde SC. Post-harvest treatment of cherry tomatoes by gamma radiation: Microbial and physicochemical parameters evaluation. Innov. Food Sci. Emerg. Technol. 36: 1–9 (2016)CrossRefGoogle Scholar
  4. 4.
    Choi DS, Park SH, Choi SR, Kim JS, Chun HH. The combined effects of ultraviolet-C irradiation and modified atmosphere packaging for inactivating Salmonella enterica serovar Typhimurium and extending the shelf life of cherry tomatoes during cold storage. Food Packaging Shelf Life 3: 19–30 (2015)CrossRefGoogle Scholar
  5. 5.
    Misra NN, Keener KM, Bourke P, Mosnier J-P, Cullen PJ. In-package atmospheric pressure cold plasma treatment of cherry tomatoes. J. Biosci. Bioeng. 118: 177–182 (2014)CrossRefGoogle Scholar
  6. 6.
    Siroli L, Patrignani F, Serrazanetti DI, Gardini F, Lanciotti R. Innovative strategies based on the use of bio-control agents to improve the safety, shelf-life and quality of minimally processed fruits and vegetables. Trends Food Sci. Technol. 46: 302–310 (2015)CrossRefGoogle Scholar
  7. 7.
    Adhikari A, Syamaladevi RM, Killinger K, Sablani SS. Ultraviolet-C light inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on organic fruit surfaces. Int. J. Food Microbiol. 210: 136–142 (2015)CrossRefGoogle Scholar
  8. 8.
    Ramesh T, Nayak B, Amirbahman A, Tripp CP, Mukhopadhyay S. Application of ultraviolet light assisted titanium dioxide photocatalysis for food safety: A review. Innov. Food Sci. Emerg. Technol. 38: 105–115 (2016)CrossRefGoogle Scholar
  9. 9.
    Mukhopadhyay S, Ukuku DO, Juneja VK. Effects of integrated treatment of nonthermal UV-C light and different antimicrobial wash on Salmonella enterica on plum tomatoes. Food Control 56: 147–154 (2015)CrossRefGoogle Scholar
  10. 10.
    Jiang Y, Fan X, Li X, Gurtler JB, Mukhopadhyay S, Jin T. Inactivation of Salmonella Typhimurium and quality preservation of cherry tomatoes by in-package aerosolization of antimicrobials. Food Control 73: 411–420 (2016)CrossRefGoogle Scholar
  11. 11.
    Cho M, Choi Y, Park H, Kim K, Woo G-J, Park J. Titanium dioxide/UV photocatalytic disinfection in fresh carrots. J. Food Prot. 70: 97–101 (2007)CrossRefGoogle Scholar
  12. 12.
    Kim Y, Choi Y, Kim S, Park J, Chung M, Song KB, Hwang I, Kwon K, Park J. Disinfection of iceberg lettuce by titanium dioxide-UV photocatalytic reaction. J. Food Prot. 72: 1916–1922 (2009)CrossRefGoogle Scholar
  13. 13.
    Yoo S, Ghafoor K, Kim JU, Kim S, Jung B, Lee D-U, Park J. Inactivation of Escherichia coli O157:H7 on orange fruit surfaces and in juice using photocatalysis and high hydrostatic pressure. J. Food Prot. 78: 1098–1105 (2015)CrossRefGoogle Scholar
  14. 14.
    Balasubramaniam VM, Martínez-Monteagudo SI, Gupta R. Principles and application of high pressure-based technologies in the food industry. Annu. Rev. Food Sci. Technol. 6: 435–462 (2015)CrossRefGoogle Scholar
  15. 15.
    Gabriel AA. Combinations of selected physical and chemical hurdles to inactivate Escherichia coli O157:H7 in apple and orange juices. Food Control 50: 722–728 (2015)CrossRefGoogle Scholar
  16. 16.
    Ross AIV, Griffiths MW, Mittal GS, Deeth HC. Combining nonthermal technologies to control foodborne microorganisms. Int. J. Food Microbiol. 89: 125–138 (2003)CrossRefGoogle Scholar
  17. 17.
    Ilahy R, Hdider C, Lenucci MS, Tlili I, Dalessandro G. Antioxidant activity and bioactive compound changes during fruit ripening of high-lycopene tomato cultivars. J. Food Compos. Anal. 24: 588–595 (2011)CrossRefGoogle Scholar
  18. 18.
    Cardoso PC, Tomazini APB, Stringheta PC, Ribeiro SMR, Pinheiro-Sant’Ana HM. Vitamin C and carotenoids in organic and conventional fruits grown in Brazil. Food Chem. 126: 411–416 (2011)CrossRefGoogle Scholar
  19. 19.
    Singleton VL, Orthofer R, Lamuela-Raventos RM. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-ciocalteu reagent. Methods Enzymol. 299: 152–178 (1999)CrossRefGoogle Scholar
  20. 20.
    Kim HS, Im NR, Park JH, Kim M, Park SN. Antioxidative effect and active component analysis of Gnaphalium affine D. DON. Extracts. J. Soc. Cosmet. Sci. Korea 40: 11–20 (2014)Google Scholar
  21. 21.
    Tangwongchai R, Ledward DA, Ames JM. Effect of high-pressure treatment on lipoxygenase activity. J. Agric. Food Chem. 48: 2896–2902 (2000)CrossRefGoogle Scholar
  22. 22.
    Goodburn C, Wallace CA. The microbiological efficacy of decontamination methodologies for fresh produce: A review. Food Control 32: 418–427 (2013)CrossRefGoogle Scholar
  23. 23.
    Liu C, Huang Y, Chen H. Inactivation of Escherichia coli O157:H7 and Salmonella Enterica on blueberries in water using ultraviolet light. J. Food Sci. 80: M1532–M1537 (2015)CrossRefGoogle Scholar
  24. 24.
    Lim W, Harrison MA. Effectiveness of UV light as a means to reduce Salmonella contamination on tomatoes and food contact surfaces. Food Control 66: 166–173 (2016)CrossRefGoogle Scholar
  25. 25.
    Shahbaz HM, Yoo S, Seo B, Ghafoor K, Kim JU, Lee D-U, Park J. Combination of TiO2-UV photocatalysis and high hydrostatic pressure to inactivate bacterial pathogens and yeast in commercial apple juice. Food Bioprocess Tech. 9: 82–90 (2016)CrossRefGoogle Scholar
  26. 26.
    Kato T, Tohma H, Miki O, Shibata T, Tamura M. Degradation of norovirus in sewage treatment water by photocatalytic ultraviolet disinfection. Nippon Steel Tech. Rep. 92: 41–44 (2005)Google Scholar
  27. 27.
    Srinivasan C, Somasundaram N. Bactericidal and detoxification effects of irradiated semiconductor catalyst, TiO2. Curr. Sci. 85: 1431–1438 (2003)Google Scholar
  28. 28.
    FDA. 21 CFR 73.575. Available from http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=73.575. Accesed Nov. 11, 2017
  29. 29.
    São José JFB, Vanetti MCD. Effect of ultrasound and commercial sanitizers in removing natural contaminants and Salmonella enterica Typhimurium on cherry tomatoes. Food Control 24: 95–99 (2012)CrossRefGoogle Scholar
  30. 30.
    Fagundes C, Moraes K, Pérez-Gago MB, Palou L, Maraschin M, Monteiro AR. Effect of active modified atmosphere and cold storage on the postharvest quality of cherry tomatoes. Postharvest Biol. Technol. 109: 73–81 (2015)CrossRefGoogle Scholar
  31. 31.
    Willcox JK, Catignani GL, Lazarus S. Tomatoes and cardiovascular health. Crit. Rev. Food Sci. Nutr. 43: 1–18 (2003)CrossRefGoogle Scholar
  32. 32.
    Capanoglu E, Beekwilder J, Boyacioglu D, De Vos RCH, Hall RD. The effect of industrial food processing on potentially health-beneficial tomato antioxidants. Crit. Rev. Food Sci. Nutr. 50: 919–930 (2010)CrossRefGoogle Scholar
  33. 33.
    Ndiaye C, Xu S-Y, Wang Z. Steam blanching effect on polyphenoloxidase, peroxidase and colour of mango (Mangifera indica L.) slices. Food Chem. 113: 92–95 (2009)CrossRefGoogle Scholar
  34. 34.
    Bravo S, García-Alonso J, Martín-Pozuelo G, Gómez V, Santaella M, Navarro-González I, Periago MJ. The influence of post-harvest UV-C hormesis on lycopene, β- carotene, and phenolic content and antioxidant activity of breaker tomatoes Food Res. Int. 49: 296–302 (2012)Google Scholar
  35. 35.
    Qiu W, Jiang H, Wang H, Gao Y. Effect of high hydrostatic pressure on lycopene stability. Food Chem. 97: 516–523 (2006)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Hafiz Muhammad Shahbaz
    • 1
    • 2
  • Sanghun Kim
    • 2
  • Jeong Un Kim
    • 2
  • Daseul Park
    • 2
  • Mijin Lee
    • 2
  • Dong-Un Lee
    • 3
  • Jiyong Park
    • 2
  1. 1.Department of Food Science and Human NutritionUniversity of Veterinary and Animal SciencesLahorePakistan
  2. 2.Department of BiotechnologyYonsei UniversitySeoulSouth Korea
  3. 3.Department of Food Science and TechnologyChung-Ang UniversityAnseongSouth Korea

Personalised recommendations