Skip to main content
Log in

Synergistic effect of Korean red ginseng and Pueraria montana var. lobata against trimethyltin-induced cognitive impairment

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

A Correction to this article was published on 12 June 2018

This article has been updated

Abstract

Many edible plant extracts exhibit biological activities. For example, the ethanol extract of Pueraria montana var. lobata (P. montana) inhibits acetylcholinesterase (AChE), and red ginseng is well known for promoting health. In this study the authors investigated the synergistic effect of P. montana and red ginseng extracts on AChE activity in vitro and in mouse brain tissues and trimethyltin (TMT)-induced cognitive impairment in a mouse model of TMT-induced neurodegeneration. A diet containing a mixture of P. montana and red ginseng extracts reversed learning and memory impairments in Y-maze and passive avoidance behavioral tests. In addition, the mixture inhibited AChE activity and lipid peroxidation synergistically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 12 June 2018

    In the original version of these 14 articles the reference list was unfortunately not represented according to the journal’s new bibliographical style, which should have been implemented from January 2018.

References

  1. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol. 58: 1685–1693 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Benishin CG, Lee R, Wang LC, Liu HJ. Effects of ginsenoside Rb1 on central cholinergic metabolism. Pharmacology. 42: 223–229 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Benishin CG. Actions of ginsenoside Rb1 on choline uptake in central cholinergic nerve endings. Neurochem Int. 21: 1–5 (1992).

    Article  CAS  PubMed  Google Scholar 

  4. Boissiere F, Faucheux B, Agid Y, Hirsch EC. Choline acetyltransferase mRNA expression in the striatal neurons of patients with Alzheimer’s disease. Neurosci. Lett. 225: 169–172 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Cai RL, Li M, Xie SH, Song Y, Zou ZM, Zhu CY, Qi Y. Antihypertensive effect of total flavone extracts from Puerariae Radix. J. Ethnopharmacol. 133: 177–183 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Cao X, Tian Y, Zhang T, Li X, Ito Y. Separation and purification of isoflavones from Pueraria lobata by high-speed counter-current chromatography. J. Chromatogr. 855: 709–713 (1999).

    Article  CAS  Google Scholar 

  7. Choi YH, Hong SS, Shin YS, Hwang BY, Park SY, Lee D. Phenolic compounds from Pueraria lobata protect PC12 cells against Abeta-induced toxicity. Arch. Pharm. Res. 33: 1651–1654 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Choi SJ, Kim MJ, Heo HJ, Kim JK, Jun WJ, Kim HK, Kim EK, Kim MO, Cho HY, Hwang HJ, Kim YJ, Shin DH. Ameliorative effect of 1,2-benzenedicarboxylic acid dinonyl ester against amyloid β peptide-induced neurotoxicity. Amyloid. 16: 15–24 (2009).

    Article  CAS  Google Scholar 

  9. Choi SJ, Oh SS, Kim CR, Kwon YK, Suh SH, Kim JK, Park GG, Son SY, Shin DH. Perilla frutescens extract ameliorates acetylcholinesterase and trimethyltin chloride-induced neurotoxicity. J. Med. Food. 19: 281–289 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. Ellman GL, Courtney KD, Andres Jr V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88–95 (1961).

    Article  CAS  PubMed  Google Scholar 

  11. Heo JH, Lee ST, Chu K, Oh M, Park HJ, Shim JY, Kim M. An open-label trial of Korean red ginseng as an adjuvant treatment for cognitive impairment in patients with Alzheimer’s disease. Eur. J. Neurol. 15:865–868 (2008).

    Article  PubMed  Google Scholar 

  12. Heo HJ, Suh YM, Kim MJ, Choi SJ, Mun NS, Kim HK, Kim EK, Kim CJ, Cho HY, Kim YJ, Shin DH. Daidzein activates choline acetyltransferase from MC-IXC cells and improves drug-induced amnesia. Biosci. Biotechnol. Biochem. 70: 107–111 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Hestrin S. The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine, and its analytical application. J. Biol. Chem. 180: 249–261 (1949).

    CAS  PubMed  Google Scholar 

  14. Hou Y, Yu YB, Liu G, Luo Y. A natural squamosamide derivative FLZ reduces amyloid-beta production by increasing non-amyloidogenic AbetaPP processing. J. Alzheimers Dis. 18: 153–165 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Ikeya Y, Takeda S, Tunakawa M, Karakida H, Toda K, Yamaguchi T, Aburada M. Cognitive improving and cerebral protective effects of acylated oligosaccharides in Polygala tenuifolia. Biol. Pharm. Bull. 27: 1081–1085 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Jin SH, Park JK, Nam KY, Park SN, Jung NP. Korean red ginseng saponins with low ratios of protopanaxadiol and protopanaxatriol saponin improve scopolamine-induced learning disability and spatial working memory in mice. J. Ethnopharmacol. 66:123–129 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Kim JK, Choi SJ, Bae H, Kim CR, Cho HY, Kim YJ, Lim ST, Kim CJ, Kim HK, Sabrina P, Shin DH. Effects of methoxsalen from Poncirus trifoliata on acetylcholinesterase and trimethyltin-induced learning and memory impairment. Biosci. Biotechnol. Biochem. 75: 1984–1989 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Kim CR, Choi SJ, Kwon YK, Kim JK, Kim YJ, Park GG, Shin DH. Cinnamomum loureirii extract inhibits acetylcholinesterase activity and ameliorates trimethyltin-induced cognitive dysfunction in mice. Biol. Pharm. Bull. 39: 1130–1136 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Kim MJ, Choi SJ, Lim ST, Kim HK, Heo HJ, Kim EK, Jun WJ, Cho HY, Kim YJ, Shin DH. Ferulic acid supplementation prevents trimethyltin-induced cognitive deficits in mice. Biosci. Biotechnol. Biochem. 71:1063–1068 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Kim HJ, Kim P, Shin CY. A comprehensive review of the therapeutic and pharmacological effects of ginseng and ginsenosides in central nervous system. J. Ginseng Res. 37:8–29 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu X, Mo Y, Gong J, Li Z, Peng H, Chen J, Wang Q, Ke Z, Xie J. Puerarin ameliorates cognitive deficits in streptozotocin-induced diabetic rats. Metab. Brain Dis. 31: 417–423 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Loullis CC, Dean RL, Lippa AS, Clody DE, Coupet J. Hippocampal muscarinic receptor loss following trimethyl tin administration. Pharmacol. Biochem. Behav. 22: 147–151 (1985).

    Article  CAS  PubMed  Google Scholar 

  23. Ohno K, Tsujino A, Brengman JM, Happer CM, Bajzer Z, Udd B, Beyring R, Robb S, Kirkham FJ, Engel AG. Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc. Natl. Acad. Sci. USA. 98: 2017–2022 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Perry EK, Perry RH, Blessed G, Tomlinson BE. Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol. Appl. Neurobiol. 4: 273–277 (1978).

    Article  CAS  PubMed  Google Scholar 

  25. Petkov VD, Mosharrof AH. Effects of standarized ginseng extract on learning, memory and physical capabilities. Am. J. Chin. Med. 15:19–29 (1987).

    Article  CAS  PubMed  Google Scholar 

  26. Schliebs R, Arendt T. The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 221: 555–563 (2011).

    Article  CAS  PubMed  Google Scholar 

  27. Shuto M, Higuchi K, Sugiyama C, Yoneyama M, Kuramoto N, Nagashima R, Kawada K, Ogita K. Endogenous and exogenous glucocorticoids prevent trimethyltin from causing neuronal degeneration of the mouse brain in vivo: involvement of oxidative stress pathways. J. Pharmacol. Sci. 110: 424–436 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Terry AV, Buccafusco JJ. The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J. Pharmacol. Exp. Ther. 306: 821–827 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Tsang D, Yeung HW, Tso WW, Peck H. Ginseng saponins: influence on neurotransmitter uptake in rat brain synaptosomes. Planta Med. 51: 221–224 (1985).

    Article  Google Scholar 

  30. Wang X, Cai J, Zhang J, Wang C, Yu A, Chen Y, Zuo Z. Acute trimethyltin exposure induces oxidative stress response and neuronal apoptosis in Sebastiscus marmoratus. Aquat. Toxicol. 90: 58–64 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Wang Q, Sun LH, Jia W, Liu XM, Dang HX, Mai WL, Wang N, Steinmetz A, Wang YQ, Xu CJ. Comparison of ginsenosides Rg1 and Rb1 for their effects on improving scopolamine-induced learning and memory impairment in mice. Phytother. Res. 24: 1748–1754 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Woodruff ML, Baisden RH. Exposure to trimethyltin significantly enhances acetylcholinesterase staining in the rat dentate gyrus. Neurotoxicol. Teratol. 12:33–39 (1990).

    Article  CAS  PubMed  Google Scholar 

  33. Yamaguchi Y, Haruta K, Kobayashi H. Effects of ginsenosides on impaired performance induced in the rat by scopolamine in a radial-arm maze. Psychoneuroendocrinology. 20: 645–653 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Younkin SG, Goodridge B, Katz J, Lockett G, Nafziger D, Usiak MF. Molecular forms of acetylcholinesterases in Alzheimer’s disease. Fed. Proc. 45: 2982–2988 (1986).

    CAS  PubMed  Google Scholar 

  35. Zhang Z, Lam TN, Zuo Z. Radix Puerariae: an overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. J. Clin. Pharmacol. 53: 787–811 (2013).

    Article  PubMed  Google Scholar 

  36. Zhang JT, Liu Y, Qu ZhW, Zhang XL, Xiao HL. Influence of ginsenoside Rb1 and Rg1 on some central neurotransmitter receptors and protein biosynthesis in mouse brain. Acta Pharm. Sin. 23: 12–16 (1988).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a Korea University Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Hoon Shin.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seo, YM., Choi, S.J., Park, C.K. et al. Synergistic effect of Korean red ginseng and Pueraria montana var. lobata against trimethyltin-induced cognitive impairment. Food Sci Biotechnol 27, 1193–1200 (2018). https://doi.org/10.1007/s10068-018-0362-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-018-0362-9

Keywords

Navigation