Food Science and Biotechnology

, Volume 27, Issue 4, pp 1093–1102 | Cite as

Optimization of ultrasonic-assisted extraction of phenolic compounds from Justicia spicigera leaves

  • Luis Miguel Anaya-Esparza
  • Dení Ramos-Aguirre
  • Víctor Manuel Zamora-Gasga
  • Elhadi Yahia
  • Efigenia Montalvo-González


A Box–Behnken design (Extraction-time, pulse-cycle, sonication-amplitude) was employed to extract phenolic compounds from Justicia spicigera leaves by ultrasonic-assisted extraction. The muicle leaves extracts were analyzed measuring total phenolic compounds and antioxidant capacity. According to response surface methodology the optimal conditions of ultrasonic-assisted extraction to obtain the highest soluble phenolic content were 2 min (extraction time) for 0.7 s (pulse cycle) at 55% of sonication amplitude. Under these optimal conditions, the total phenolic content was higher when was used ultrasonic-assisted extraction (54.02 mg/g) than stirring (46.46 mg/g) and thermal decoction (47.76 mg/g); however, the antioxidant capacity from J. spicigera extracts did not increase by ultrasonic-assisted extraction. The extracts or aqueous infusions from J. spicigera leaves are used for therapeutic proposes, therefore the ultrasonic-assisted extraction is a useful technology to improve the extraction of phytochemicals from J. spicigera leaves.


Justicia spicigera Polyphenols Ultrasonic-assisted extraction Response surface methodology Optimization 



This research was financially supported by Tecnólogico Nacional de Mexico (Grant No. 5611.15-P).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Sengupta SD, Paul R. Exploration of knowledge on new ethno-botanical value of Justicia spicigera Schltdl. Global J Res. Med. Plants Indigen. Med. 5: 261–266 (2016).Google Scholar
  2. 2.
    Pavón‐García LMA, Pérez‐Alonso C, Orozco‐Villafuerte J, Pimentel‐González DJ, Rodríguez‐Huezo ME, Vernon‐Carter EJ. Storage stability of the natural colourant from Justicia spicigera microencapsulated in protective colloids blends by spray‐drying. Int. J. Food Sci. Technol. 46: 1428–1437 (2011).CrossRefGoogle Scholar
  3. 3.
    Zapata‐Morales JR, Alonso‐Castro AJ, Domínguez F, Carranza‐Álvarez C, Castellanos LMO, Martínez‐Medina RM, Pérez‐Urizar J. Antinociceptive Activity of an Ethanol Extract of Justicia spicigera. Drug Dev. Res. 77: 180–186 (2016).CrossRefGoogle Scholar
  4. 4.
    Ortiz-Andrade R, Cabañas-Wuan A, Arana-Argáez VE, Alonso-Castro AJ, Zapata-Bustos R, Salazar-Olivo LA, Domínguez F, Chávez M, Carranza-Álvarez C, García-Carrancá A. Antidiabetic effects of Justicia spicigera Schltdl (Acanthaceae). J. Ethnopharma. 143: 455–462 (2012).CrossRefGoogle Scholar
  5. 5.
    Esquivel-Gutiérrez ER, Noriega-Cisneros R, Arellano-Plaza M, Ibarra-Barajas M, Salgado-Garciglia R, Saavedra-Molina A. Antihypertensive effect of Justicia spicigera in L-NAME-induced hypertensive rats. Pharmacology. 2: 120–127 (2013).Google Scholar
  6. 6.
    Alonso-Castro AJ, Ortiz-Sánchez E, Domínguez F, Arana-Argáez V, Juárez-Vázquez MC, Chávez M, Carranza-Álvarez C, Gaspar-Ramírez O, Espinoza-Reyes G, López-Toledo G, Ortíz-Andrade R, García-Carrancá A. Antitumor and immunomodulatory effects of Justicia spicigera Schltdl (Acanthaceae). J. Ethnopharmacol. 141: 888–894 (2012).CrossRefGoogle Scholar
  7. 7.
    Cassani J, Dorantes-Barrón AM, Novales LM, Real GA, Estrada-Reyes R. Anti-depressant-like effect of Kaempferitrin isolated from Justicia spicigera Schltdl (Acanthaceae) in two behavior models in mice: Evidence for the involvement of the serotonergic system. Molecules. 19: 21442–21461 (2014).CrossRefGoogle Scholar
  8. 8.
    Sepúlveda-Jiménez G, Reyna-Aquino C, Chaires-Martínez L, Bermúdez-Torres K, Rodríguez-Monroy M. Antioxidant activity and content of phenolic compounds and flavonoids from Justicia spicigera. J. Biol. Sci. 9: 629–632 (2009).CrossRefGoogle Scholar
  9. 9.
    Baqueiro-Peña I, Guerrero-Beltrán JA. Uses of Justicia spicigera in medicine and as a source of pigments. Funct. Foods Heal. Dis. 4: 401–414 (2014).Google Scholar
  10. 10.
    Azmir J, Zaidul ISM, Rahman MM, Sharif KM, Mohamed A, Sahena F, Jahurul MHA, Ghafoor K, Norulaini NAN, Omar AKM. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 117: 426–436 (2013).CrossRefGoogle Scholar
  11. 11.
    Zamora‐Gasga VM, Serafín‐García MS, Sánchez‐Burgos JA, Estrada RMV, Sáyago‐Ayerdi SG. Optimization of Ultrasonic‐Assisted Extraction of antioxidant compounds from Starfruit (Averroha carambola L) leaves. J. Food Process. Preserv. (2016).Google Scholar
  12. 12.
    Upadhyay R, Nachiappan G, Mishra HN. Ultrasound-assisted extraction of flavonoids and phenolic compounds from Ocimum tenuiflorum leaves. Food Sci. Biotechnol. 24: 1951–1958 (2015).CrossRefGoogle Scholar
  13. 13.
    Baqueiro-Peña I, Guerrero-Beltrán JA. Physicochemical and antioxidant characterization of Justicia spicigera. Food Chem. 218: 305–312 (2017).CrossRefGoogle Scholar
  14. 14.
    Zou, TB, Xia, EQ, He, TP, Huang, MY, Jia, Q, Li, HW. Ultrasound-Assisted Extraction of Mangiferin from Mango (Mangifera indica L.) Leaves Using Response Surface Methodology. Molecules. 19: 1411–1421 (2014).CrossRefGoogle Scholar
  15. 15.
    Zhu, Z, Guan, Q, Guo, Y, He, J, Liu, G, Li, S, Jaffrin, MY. Green ultrasound-assisted extraction of anthocyanin and phenolic compounds from purple sweet potato using response surface methodology. Int. Agrophys. 30(1): 113–122 (2016).CrossRefGoogle Scholar
  16. 16.
    García-Márquez E, Román-Guerrero A, Pérez-Alonso C, Cruz-Sosa F, Jiménez-Alvarado R, Vernon-Carter EJ. Effect of solvent-temperature extraction conditions on the initial antioxidant activity and total phenolic content of muitle extracts and their decay upon storage at different pH. Rev. Mex. Ing. Quim. 11: 1–10 (2012).Google Scholar
  17. 17.
    Pérez-Jiménez J, Arranz S, Tabernero M, Díaz-Rubio ME, Serrano J, Goñi I, Saura-Calixto F. Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Res. Int. 41: 274–285 (2008).CrossRefGoogle Scholar
  18. 18.
    Montreau F. Sur le dosage des composés phénoliques totaux dans les vins par la methode Folin-Ciocalteau. Connaiss Vigne Vin. 24: 397–404 (1972).Google Scholar
  19. 19.
    Hartzfeld PW, Forkner R, Hunter MD, Hagerman AE. Determination of hydrolyzable tannins (gallotannins and ellagitannins) after reaction with potassium iodate. J. Agric. Food Chem. 50: 1785–1790 (2002).CrossRefGoogle Scholar
  20. 20.
    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 26: 1231–1237 (1999).CrossRefGoogle Scholar
  21. 21.
    Prior RL, Wu X, Schaich K. Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53: 4290–4302 (2005).CrossRefGoogle Scholar
  22. 22.
    Benzie IF, Strain J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 239: 70–76 (1996).CrossRefGoogle Scholar
  23. 23.
    Aydar AY, Bagdathiglu N, Koseoglu O. Effect on olive oil extraction and optimization of ultrasound-assisted extraction of extra virgin olive oil by response surface methodology (RSM). Grasas y Aceites. 68(2): el89 (2017).CrossRefGoogle Scholar
  24. 24.
    Kim HS, Lee AY, Jo JE, Moon BC, Chun JM, Choi G, Kim HK. Optimization of ultrasound-assisted extraction of quercitrin from Houttuynia cordata Thunb. using response surface methodology and UPLC analysis. Food Sci. Biotechnol. 23: 1–7 (2014).CrossRefGoogle Scholar
  25. 25.
    Khan MK, Abert-Vian M, Fabiano-Tixier AS, Dangles O, Chemat F. Ultrasound-assisted extraction of polyphenols (flavanone glycosides) from orange (Citrus sinensis L.) peel. Food Chem. 119: 851–858 (2010).CrossRefGoogle Scholar
  26. 26.
    Ghitescu RE, Volf I, Carausu C, Buhlmann AM, Gilca IA, Popa VI. Optimization of ultrasound-assisted extraction of polyphenols from spruce wood bark. Ultrason. Sonochem. 22: 535–541 (2015). 30.Google Scholar
  27. 27.
    Bashi DS, Mortazavi SA, Rezaei K, Rajaei A, Karimkhani MM. Optimization of ultrasound-assisted extraction of phenolic compounds from yarrow (Achillea beibrestinii) by response surface methodology. Food Sci. Biotechnol. 21: 1005–1011 (2012).CrossRefGoogle Scholar
  28. 28.
    Pan Z, Qu W, Ma H, Atungulu GG, McHugh TH. Continuous and pulsed ultrasound-assisted extractions of antioxidants from pomegranate peel. Ultrason. Sonochem. 18: 1249–1257 (2011).CrossRefGoogle Scholar
  29. 29.
    Guerrero, S, López-Malo, A, Alzamora, SM. Effect of ultrasound on the survival of Saccharomyces cerevisiae: Influence of temperature, pH and amplitude. Innov. Food Sci. Emerg. Technol. 2, 31–39 (2001).CrossRefGoogle Scholar
  30. 30.
    Guo L, Zhu WC, Liu YT, Wu JY, Zheng AQ, Liu YL. Response surface optimized extraction of flavonoids from mimenghua and its antioxidant activities in vitro. Food Sci. Biotechnol. 22: 1–8 (2013).CrossRefGoogle Scholar
  31. 31.
    Michelon M, de Matos de Borba T, da Silva Rafael R, Burkert CAV, de Medeiros Burkert JF. Extraction of carotenoids from Phaffia rhodozyma: A comparison between different techniques of cell disruption. Food Sci. Biotechnol. 21: 1–8 (2012).CrossRefGoogle Scholar
  32. 32.
    Nafar M, Emam-Djomeh Z, Yousefi S, Hashemi M. An optimization study on the ultrasonic treatments for Saccharomyces cerevisiae inactivation in red grape juice with maintaining critical quality attributes. J. Food Qual. 36: 269–281 (2013).CrossRefGoogle Scholar
  33. 33.
    Yang RF, Huang PP, Qiu TQ. Ultrasound-enhanced subcritical water extraction of naphthoquinone pigments from purple gromwell (Lithospermum erythrorhizon) to higher yield and bioactivity. Food Sci. Biotechnol. 22: 671–676 (2013).CrossRefGoogle Scholar
  34. 34.
    Sousa AD, Maia AIV, Rodrigues THS, Canuto KM, Ribeiro PRV, Pereira RDC. de Brito ES. Ultrasound-assisted and pressurized liquid extraction of phenolic compounds from Phyllanthus amarus and its composition evaluation by UPLC-QTOF. Ind. Crops Prod. 79: 91–103 (2016). 39.Google Scholar
  35. 35.
    Sun J, Li X, Lin X, Mei Z, Li Y, Ding L, Bai W. Sonodegradation of cyanidin‐3‐glucosylrutinoside: degradation kinetic analysis and its impact on antioxidant capacity in vitro. J. Sci. Food Agric. 97: 1475–1481 (2017).CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratorio de Microbiología de AlimentosUniversidad de GuadalajaraTepatitlán de MorelosMexico
  2. 2.Laboratorio Integral de Investigación en AlimentosInstituto Tecnológico de TepicTepicMexico
  3. 3.Facultad de Ciencias NaturalesUniversidad Autonoma de QueretaroJuriquillaMexico

Personalised recommendations