Use of inductors in the control of Colletotrichum gloeosporioides and Rhizopus stolonifer isolated from soursop fruits: in vitro tests

  • Anelsy Ramos-Guerrero
  • Ramsés Ramón González-Estrada
  • Greta Hanako-Rosas
  • Silvia Bautista-Baños
  • Gustavo Acevedo-Hernández
  • Martin Ernesto Tiznado-Hernández
  • Porfirio Gutiérrez-Martínez
Article
  • 65 Downloads

Abstract

Soursop (Annona muricata) is a tropical fruit that can be infected by Colletotrichum gloeosporioides and Rhizopus stolonifer. Traditional methods used for postharvest disease control include the application of fungicides, however due to their excessive use, as well as their persistence in the environment, the development of new strategies that control pathogens are required. The application of chitosan (Chi), salicylic acid (SA) and methyl jasmonate (MJ) is an environmentally-friendly alternative with antimicrobial properties and also induces defense mechanisms in plant tissues. In this study, Colletotrichum was reactivated and Rhizopus was identified using morphological features and molecular tools. In vitro, the application of 0.5 and 1.0% of Chi alone or in combination with SA and MJ decreased mycelial growth and sporulation, a complete inhibition of spore germination was obtained. Thus, the application of Chi in combination with SA and MJ could be a smart strategy to inhibit the development of pathogens that attack soursop fruit.

Keywords

Antimicrobial activity Pathogens Postharvest Soursop Tropical fruit 

Notes

Acknowledgements

The authors are grateful for the financial support from Tecnológico Nacional de México (TecNM) for Project 5214.14-P and CONACYT for the fellowship granted to Anelsy Ramos-Guerrero.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    SIAP/SAGARPA. Cierre de la producción agrícola por estado. Anuario Estadístico de la Producción Agrícola de guanábana en México. Available from: http://www.gob.mx/siap/acciones-y-programas/produccion-agricola-33119. Accessed Dec. 10th, 2016
  2. 2.
    Andrades I, Yender F, Labarca J, Ulacio D, Paredes C, Marín Y. Evaluación de la antracnosis (Colletotrichum sp.) en guanábana (Annona muricata L.) tipo Gigante en el sector Moralito del Estado Zulia, Venezuela. Rev. UDO Agric. 9: 148–157 (2009)Google Scholar
  3. 3.
    Terry L, Joyce D. Elicitors of induced disease resistance in postharvest horticultural crops: a brief review. Postharvest Biol. Technol. 32: 1–13 (2004)CrossRefGoogle Scholar
  4. 4.
    Berúmen-Varela G, Coronado-Partida L, Ochoa-Jiménez A, Chacón-López M, Gutiérrez-Martínez P. Effect of chitosan on the induction of disease resistance against Colletotrichum sp in mango (Mangifera indica L.) cv Tommy Atkins. Rev. Inv. Ciencia. 23(66): 16–21 (2015a)Google Scholar
  5. 5.
    Romanazzi G, Feliziani E, Bautista-Baños S, Sivakumar D. Shelf life extension of fresh fruit and vegetables by chitosan treatment. Crit. Rev. Food Sci. Nutr. 57: 579–601 (2017)CrossRefGoogle Scholar
  6. 6.
    Sánchez-Domínguez D, Bautista-Baños S, Castillo O. Efecto del quitosano en el desarrollo y morfología de A. alternata (Fr.) Keissl. Anales Biol. 29: 23–32 (2007)Google Scholar
  7. 7.
    Xu Y, Chang PFL, Liu D, Narasimhan ML, Raghothanma KG, Gasegawa PM, Bressan RA. Plant Defense Genes Are Synergistically Induced by Ethylene and Methyl Jasmonate. Plant Cell. 6(8): 1077–1085 (1994)CrossRefGoogle Scholar
  8. 8.
    Naylor M, Murphy AM, Berry JQ, Carr JP. Salicylic acid can induce resistance to plant virus movement. Mol. Pl. Microbe Interact. 11: 860–868 (1998)CrossRefGoogle Scholar
  9. 9.
    Creelman RA, Mullet JE. Biosynthesis and action of jasmonate in plants. Annu. Rev. Plant Physiol. Mol. Biol. 48: 355–381 (1997)CrossRefGoogle Scholar
  10. 10.
    Moline HE, Buta JG, Saftner RA, Maas JL. Comparison of three volatile natural products for the reduction of postharvest decay in strawberries. Adv. Strawberry Res. 16: 43–48 (1997)Google Scholar
  11. 11.
    Cao SF, Zheng YH, Yang ZF, Tang SS, Jin P, Wang KT, Wang XM. Effect of methyl jasmonate on the inhibition of Colletotrichum acutatum infection in loquat fruit and the possible mechanisms. Postharvest Biol. Technol. 49: 301–307 (2008)CrossRefGoogle Scholar
  12. 12.
    Suárez-Quiroz M, Mendoza-Bautista I, Monroy-Rivera J, De la Cruz-Medina J, Angulo-Guerrero O, González-Ríos O. Aislamiento, identificación y sensibilidad a antifúngicos de hongos fitopatógenos de papaya cv. maradol (Carica papaya L.). Rev Tecnol. Postcosecha. 14(2): 115–124 (2013)Google Scholar
  13. 13.
    Álvarez E, Ospina C, Mejía J, Llano G. Caracterización morfológica, patogénica y genética del agente causal de la antracnosis (Colletotrichum gloeosporoides) en guanábana (Annona muricata) en Valle de Cauca. Fitopatol. Colombiana. 28: 1–8 (2011)Google Scholar
  14. 14.
    Dhandhukia P, Thakkar V. Separation Quantitation of jasmonic acid using HPTLC. J. of Chromatographic Science. 46(4): 320–324 (2008)CrossRefGoogle Scholar
  15. 15.
    Bozzala J, Russell L. Specimen preparation for Scanning Electron Microscopy. Jones and Bartlett. Principles and Techniques for Biologists. Sudbury Massachusetts (1992)Google Scholar
  16. 16.
    Pitt JI, Hocking AD. Fungi and food spoilage. Springer Science, NY, USA (2009)CrossRefGoogle Scholar
  17. 17.
    Benhamou N. Ultrastructural and cytochemical aspects of chitosan on Fusarium oxysporum f. sp. radicis-lycopersici, agent of tomato crown and root rot. Phytopathology. 82: 1185–1193 (1992)CrossRefGoogle Scholar
  18. 18.
    Song Y, Babiker E, Usui M, Saito A, Kato A. Emulsifying properties and bactericidal action of chitosan-lysozyme conjugates. Food Res. Int. 35: 459–466 (2002)CrossRefGoogle Scholar
  19. 19.
    Bautista-Baños S, Hernández-Lauzardo A, Velázquez-Valle M, Hernández-López M, Ait-Barka E, Bosquez-Molina E, Wilson C. Chitosan as a potential natural compound to control pre-and postharvest diseases of horticultural commodities. Crop Prot. 25: 108–118 (2006)CrossRefGoogle Scholar
  20. 20.
    García-Rincón J, Vega-Pérez J, Guerra-Sánchez M, Hernández-Lauzardo, A, Peña-Díaz A, Velázquez-del Valle M. Effect of chitosan on growth and plasma membrane properties of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Pesticide Biochemistry and Physiology. 97: 275–278 (2010)CrossRefGoogle Scholar
  21. 21.
    Qing W, Jin-hua Z, Qian W, Yang N, Li-pu G. Inhibitory effect of chitosan on growth of the fungal phytopathogen, Sclerotinia sclerotiorum, and sclerotinia rot of carrot. J. of Integrative Agriculture. 14(4): 691–697 (2015)CrossRefGoogle Scholar
  22. 22.
    Chen J, Zou X, Liu Q, Wang F, Feng W, Wan N. Combination effect of chitosan and methyl jasmonate on controlling Alternaria alternata and enhancing activity of cherry tomato fruit defense mechanisms. Crop Protection. 56: 31–36 (2014)CrossRefGoogle Scholar
  23. 23.
    Waewthongrak W, Pisuchpen S, Leelasuphakul W. Effect of Bacillus subtilis and chitosan applications on green mold (Penicillium digitatum Sacc.) decay in citrus fruit. Postharvest Biol. Technol. 99: 44–49 (2015)CrossRefGoogle Scholar
  24. 24.
    Berumen-Varela G, Ochoa-Jiménez A, Báez-Sañudo R, Gutiérrez-Martínez P. Efecto del ácido salicílico en la inducción de resistencia a Colletotrichum sp. en frutos de plátano durante postcosecha. Rev. Iber. Tecnología Postcosecha. 16: 27–34 (2015b)Google Scholar
  25. 25.
    Guerra-Sánchez M, Sandoval-Escobar L, Amora-Lazcano E, Vásquez-Méndez L, Velázquez del Valle M, Hernández-Lauzardo A. Efecto del quitosano en el desarrollo in vitro de Rhizopus stolonifer (Ehrenb.:Fr.) Vuill en dos medios de cultivo. Revista Colombiana de Biotecnología. 12(2): 214–222 (2010)CrossRefGoogle Scholar
  26. 26.
    Zhu Z, Tian S. Resistant responses of tomato fruit treated with exogenous methyl jasmonate to Botrytis cinerea infection. Scientia Horticulturae. 142: 38–43 (2012)CrossRefGoogle Scholar
  27. 27.
    Qiu M, Wu C, Ren G, Liang X, Wang X, Huang J. Effect of chitosan and its derivatives as antifungal and preservative agents on postharvest green asparagus. Food Chem. 155: 105–111 (2014)CrossRefGoogle Scholar
  28. 28.
    López-Mora L, Gutiérrez-Martínez P, Bautista-Baños S, Jiménez-García L, Zavaleta-Mancera H. Evaluación de la actividad antifúngica del quitosano en Alternaria alternata y en la calidad del mango ‘tommy atkins’ durante el almacenamiento. Rev Chapingo Serie Horticultura. 19(3): 315–331 (2013)CrossRefGoogle Scholar
  29. 29.
    El Ghaouth A, Grenier J, Asselin A. Antifungal activity of chitosan on two postharvest pathogens of strawberry fruits. Phytopathology. 82: 398–402 (1992)CrossRefGoogle Scholar
  30. 30.
    Ayala G. Efecto antimicrobiano del quitosano: Una revisión de la literatura. Scientia Agroalimentaria. 2: 6–12 (2014)Google Scholar
  31. 31.
    Oliveira R, Takaki M, Castilho T, Luiz V, Cláudio J, José M, Oliveira V. Synthesis, characterization and antifungal activity of quaternary derivatives of chitosan on Aspergillus flavus. Microb. Res. 168: 50–55 (2013)CrossRefGoogle Scholar
  32. 32.
    Bautista-Baños S, Ramos-García M, Hernández-López M, Córdova-Albores L, López- Mora L, Gutiérrez-Martínez P, Sánchez-Domínguez D. Use of scanning and transmission electron microscopy to identify morphological and cellular damage on phytopathogenic fungi due to natural products application. Current Microscopy Contributions to Advances in Science and Technology. 1: 401–405 (2012)Google Scholar
  33. 33.
    Rodríguez A, Plascencia M, Bautista-Baños S, Onofre M, Ramírez M. Actividad antifúngica in vitro de quitosanos sobre Bipolaris oryzae patógeno del arroz. Plant and Crop Protection. 65: 98–103 (2016)Google Scholar
  34. 34.
    Zhang H, Li R, Liu W. Effects of chitin and its derivative chitosan on postharvest decay of fruits: A review. Int. J. of Mol. Sci. 12: 917–934 (2011)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Anelsy Ramos-Guerrero
    • 1
  • Ramsés Ramón González-Estrada
    • 1
  • Greta Hanako-Rosas
    • 2
  • Silvia Bautista-Baños
    • 3
  • Gustavo Acevedo-Hernández
    • 4
  • Martin Ernesto Tiznado-Hernández
    • 5
  • Porfirio Gutiérrez-Martínez
    • 1
  1. 1.Tecnológico Nacional de México/Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en AlimentosTepicMexico
  2. 2.Instituto de Ecología, A.C. Unidad de Microscopía BioMimic, Carretera Antigua a CoatepecXalapaMexico
  3. 3.Instituto Politécnico Nacional, Centro de Desarrollo de Productos BióticosYautepecMexico
  4. 4.Universidad de Guadalajara, Centro Universitario de la Ciénega (CUCIENEGA). Av. UniversidadOcotlánMexico
  5. 5.Centro de Investigación en Alimentación y Desarrollo, Dirección de Tecnología de Alimentos de Origen VegetalHermosilloMexico

Personalised recommendations