Food Science and Biotechnology

, Volume 27, Issue 2, pp 441–450 | Cite as

Preparation, characterization, and cellular uptake of resveratrol-loaded trimethyl chitosan nanoparticles

  • Jeong Bin Min
  • Eun Suh Kim
  • Ji-Soo Lee
  • Hyeon Gyu Lee


The aim of the study was to encapsulate resveratrol (RV) in trimethyl chitosan (TMC) nanoparticles cross-linked with tripolyphosphate (TPP) and/or alginate to achieve controlled release and improved cellular uptake. TMC (degree of quaternization of 78%) was prepared by reacting purified chitosan with iodomethane. Three types of RV-loaded TMC nanoparticles were prepared: TMC–TPP (TP-NPs), TMC–alginate (TA-NPs), and TMC–alginate–TPP (TAP-NPs). TA-NPs and TAP-NPs showed lower particle size and encapsulation efficiency (EE), better distribution, and more sustained release than TP-NPs due to the high molecular weight and viscous property of alginate. Caco-2 cellular uptake of RV was improved by TMC nanoencapsulation, and TP-NPs showed the highest uptake due to its significantly higher EE. Compared with TAP-NPs, TA-NPs with higher positive surface charge showed higher cellular uptake. Moreover, Caco-2 cell growth-inhibiting activity of RV was significantly increased by TMC nanoencapsulation and TP-NPs showed the significantly highest activity with a good agreement with the permeability results.


Trimethyl chitosan Nanoencapsulation Controlled release Cellular uptake Cytotoxicity 



This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), which is funded by the Ministry of Science, ICT, & Future Planning (No. 2014M3A7B4051898).


  1. 1.
    Gresele P, Cerletti C, Guglielmini G, Pignatelli P, de Gaetano G, Violi F. Effects of resveratrol and other wine polyphenols on vascular function: an update. J. Nutr. Biochem. 22:201–211 (2011)CrossRefGoogle Scholar
  2. 2.
    Lekli I, Ray D, Das DK. Longevity nutrients resveratrol, wines and grapes. Genes Nutr. 5:55–60 (2010)CrossRefGoogle Scholar
  3. 3.
    Das S, Das DK. Resveratrol: a therapeutic promise for cardiovascular diseases. Recent Pat. Cardiovasc. Drug Discov. 2:133–138 (2007)CrossRefGoogle Scholar
  4. 4.
    Alarcon De La Lastra C, Villegas I. Resveratrol as an anti‐inflammatory and anti‐aging agent: Mechanisms and clinical implications. Mol. Nutr. Food Res. 49:405–430 (2005)CrossRefGoogle Scholar
  5. 5.
    Athar M, Back JH, Kopelovich L, Bickers DR, Kim AL. Multiple molecular targets of resveratrol: Anti-carcinogenic mechanisms. Arch. Biochem. Biophys. 486:95–102 (2009)CrossRefGoogle Scholar
  6. 6.
    Sessa M, Tsao R, Liu R, Ferrari G, Donsì F. Evaluation of the stability and antioxidant activity of nanoencapsulated resveratrol during in vitro digestion. J. Agric. Food Chem. 59:12352–12360 (2011)CrossRefGoogle Scholar
  7. 7.
    Zupančič Š, Lavrič Z, Kristl J. Stability and solubility of trans-resveratrol are strongly influenced by pH and temperature. Eur. J. Pharm. Biopharm. 93:196–204 (2015)CrossRefGoogle Scholar
  8. 8.
    Davidov-Pardo G, McClements DJ. Resveratrol encapsulation: designing delivery systems to overcome solubility, stability and bioavailability issues. Trends Food Sci. Technol. 38:88–103 (2014)CrossRefGoogle Scholar
  9. 9.
    Fang Z, Bhandari B. Encapsulation of polyphenols–a review. Trends Food Sci. Technol. 21:510–523 (2010)CrossRefGoogle Scholar
  10. 10.
    Shahidi F, Han XQ. Encapsulation of food ingredients. Crit. Rev. Food Sci. Nutr. 33:501–547 (1993)CrossRefGoogle Scholar
  11. 11.
    Ezhilarasi P, Karthik P, Chhanwal N, Anandharamakrishnan C. Nanoencapsulation techniques for food bioactive components: a review. Food Bioproc. Tech. 6:628–647 (2013)CrossRefGoogle Scholar
  12. 12.
    Esfanjani AF, Jafari SM. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloid Surf. B-Biointerfaces 146:532–543 (2016)CrossRefGoogle Scholar
  13. 13.
    de Vos P, Faas MM, Spasojevic M, Sikkema J. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int. Dairy J. 20:292–302 (2010)CrossRefGoogle Scholar
  14. 14.
    Kean T, Thanou M. Biodegradation, biodistribution and toxicity of chitosan. Adv. Drug Deliv. Rev. 62:3–11 (2010)CrossRefGoogle Scholar
  15. 15.
    Chaudhury A, Das S. Recent advancement of chitosan-based nanoparticles for oral controlled delivery of insulin and other therapeutic agents. AAPS PharmSciTech 12:10–20 (2011)CrossRefGoogle Scholar
  16. 16.
    Kim ES, Lee J-S, Lee HG. Nanoencapsulation of red ginseng extracts using chitosan with polyglutamic acid or fucoidan for improving antithrombotic activities. J. Agric. Food Chem. 64:4765–4771 (2016)CrossRefGoogle Scholar
  17. 17.
    Pan Y, Li Y-J, Zhao H-Y, Zheng J-M, Xu H, Wei G, Hao J-S. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int. J. Pharm. 249:139–147 (2002)CrossRefGoogle Scholar
  18. 18.
    Dube A, Nicolazzo JA, Larson I. Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (−)-epigallocatechin gallate. Eur. J. Pharm. Sci. 41:219–225 (2010)CrossRefGoogle Scholar
  19. 19.
    Jang K-I, Lee HG. Stability of chitosan nanoparticles for L-ascorbic acid during heat treatment in aqueous solution. J. Agric. Food Chem. 56:1936–1941 (2008)CrossRefGoogle Scholar
  20. 20.
    Vllasaliu D, Exposito-Harris R, Heras A, Casettari L, Garnett M, Illum L, Stolnik S. Tight junction modulation by chitosan nanoparticles: comparison with chitosan solution. Int. J. Pharm. 400:183–193 (2010)CrossRefGoogle Scholar
  21. 21.
    Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 64:557–570 (2012)CrossRefGoogle Scholar
  22. 22.
    Lin Y-H, Mi F-L, Chen C-T, Chang W-C, Peng S-F, Liang H-F, Sung H-W. Preparation and characterization of nanoparticles shelled with chitosan for oral insulin delivery. Biomacromolecules 8:146–152 (2007)CrossRefGoogle Scholar
  23. 23.
    Sadeghi A, Dorkoosh F, Avadi M, Weinhold M, Bayat A, Delie F, Gurny R, Larijani B, Rafiee-Tehrani M, Junginger H. Permeation enhancer effect of chitosan and chitosan derivatives: comparison of formulations as soluble polymers and nanoparticulate systems on insulin absorption in Caco-2 cells. Eur. J. Pharm. Biopharm. 70:270–278 (2008)CrossRefGoogle Scholar
  24. 24.
    Chen F, Zhang Z-R, Yuan F, Qin X, Wang M, Huang Y. In vitro and in vivo study of N-trimethyl chitosan nanoparticles for oral protein delivery. Int. J. Pharm. 349:226–233 (2008)CrossRefGoogle Scholar
  25. 25.
    Cafaggi S, Russo E, Stefani R, Leardi R, Caviglioli G, Parodi B, Bignardi G, De Totero D, Aiello C, Viale M. Preparation and evaluation of nanoparticles made of chitosan or N-trimethyl chitosan and a cisplatin–alginate complex. J. Control. Release 121:110–123 (2007)CrossRefGoogle Scholar
  26. 26.
    Sieval A, Thanou M, Kotze A, Verhoef J, Brussee J, Junginger H. Preparation and NMR characterization of highly substitutedN-trimethyl chitosan chloride. Carbohydr. Polym. 36:157–165 (1998)CrossRefGoogle Scholar
  27. 27.
    Jintapattanakit A, Mao S, Kissel T, Junyaprasert VB. Physicochemical properties and biocompatibility of N-trimethyl chitosan: effect of quaternization and dimethylation. Eur. J. Pharm. Biopharm. 70:563–571 (2008)CrossRefGoogle Scholar
  28. 28.
    Chen F, Zhang Z-R, Huang Y. Evaluation and modification of N-trimethyl chitosan chloride nanoparticles as protein carriers. Int. J. Pharm. 336:166–173 (2007)CrossRefGoogle Scholar
  29. 29.
    Koo SH, Lee J-S, Kim G-H, Lee HG. Preparation, characteristics, and stability of glutathione-loaded nanoparticles. J. Agric. Food Chem. 59:11264–11269 (2011)CrossRefGoogle Scholar
  30. 30.
    Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm. Res. 24:2198–2206 (2007)CrossRefGoogle Scholar
  31. 31.
    Jang K-I, Lee J-S, Lee HG. Physicochemical properties and cell permeation efficiency of l-ascorbic acid loaded nanoparticles prepared with N-trimethyl chitosan and N-triethyl chitosan. Food Sci. Biotechnol. 23:1867–1874 (2014)CrossRefGoogle Scholar
  32. 32.
    Díaz TG, Merás ID, Rodríguez DA. Determination of resveratrol in wine by photochemically induced second-derivative fluorescence coupled with liquid–liquid extraction. Anal. Bioanal. Chem. 387:1999–2007 (2007)CrossRefGoogle Scholar
  33. 33.
    Chakraborty PK, Mustafi SB, Raha S. Pro-survival effects of repetitive low-grade oxidative stress are inhibited by simultaneous exposure to resveratrol. Pharmacol. Res. 58:281–289 (2008)CrossRefGoogle Scholar
  34. 34.
    Sergent T, Garsou S, Schaut A, De Saeger S, Pussemier L, Van Peteghem C, Larondelle Y, Schneider Y-J. Differential modulation of ochratoxin A absorption across Caco-2 cells by dietary polyphenols, used at realistic intestinal concentrations. Toxicol. Lett. 159:60–70 (2005)CrossRefGoogle Scholar
  35. 35.
    Curti E, de Britto D, Campana‐Filho SP. Methylation of chitosan with iodomethane: effect of reaction conditions on chemoselectivity and degree of substitution. Macromol. Biosci. 3:571–576 (2003)CrossRefGoogle Scholar
  36. 36.
    Polnok A, Borchard G, Verhoef J, Sarisuta N, Junginger H. Influence of methylation process on the degree of quaternization of N-trimethyl chitosan chloride. Eur. J. Pharm. Biopharm. 57:77–83 (2004)CrossRefGoogle Scholar
  37. 37.
    Gordon S, Teichmann E, Young K, Finnie K, Rades T, Hook S. In vitro and in vivo investigation of thermosensitive chitosan hydrogels containing silica nanoparticles for vaccine delivery. Eur. J. Pharm. Sci. 41:360–368 (2010)CrossRefGoogle Scholar
  38. 38.
    Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloid Surf. B-Biointerfaces 90:21–27 (2012)CrossRefGoogle Scholar
  39. 39.
    Hu Y, Jiang X, Ding Y, Ge H, Yuan Y, Yang C. Synthesis and characterization of chitosan–poly (acrylic acid) nanoparticles. Biomaterials 23:3193–3201 (2002)CrossRefGoogle Scholar
  40. 40.
    Wu Y, Yang W, Wang C, Hu J, Fu S. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int. J. Pharm. 295:235–245 (2005)CrossRefGoogle Scholar
  41. 41.
    Huang G-Q, Xiao J-X, Jia L, Yang J. Complex coacervation of O-carboxymethylated chitosan and gum arabic. Int. J. Polym. Mater. Po. 64:198–204 (2015)CrossRefGoogle Scholar
  42. 42.
    Butstraen C, Salaün F. Preparation of microcapsules by complex coacervation of gum Arabic and chitosan. Carbohydr. Polym. 99:608–616 (2014)CrossRefGoogle Scholar
  43. 43.
    Anitha A, Deepagan V, Rani VD, Menon D, Nair S, Jayakumar R. Preparation, characterization, in vitro drug release and biological studies of curcumin loaded dextran sulphate–chitosan nanoparticles. Carbohydr. Polym. 84:1158–1164 (2011)CrossRefGoogle Scholar
  44. 44.
    Shi X, Du Y, Sun L, Zhang B, Dou A. Polyelectrolyte complex beads composed of water‐soluble chitosan/alginate: Characterization and their protein release behavior. J. Appl. Polym. Sci. 100:4614–4622 (2006)CrossRefGoogle Scholar
  45. 45.
    Ranaldi G, Marigliano I, Vespignani I, Perozzi G, Sambuy Y. The effect of chitosan and other polycations on tight junction permeability in the human intestinal Caco-2 cell line. J. Nutr. Biochem. 13:157–167 (2002)CrossRefGoogle Scholar
  46. 46.
    Zhao H, Yung LYL. Addition of TPGS to folate‐conjugated polymer micelles for selective tumor targeting. J. Biomed. Mater. Res. A 91:505–518 (2009)CrossRefGoogle Scholar
  47. 47.
    Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, Zink JI, Nel AE. Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS nano 3:3273–3286 (2009)CrossRefGoogle Scholar
  48. 48.
    Cai Z, Wang Y, Zhu L-J, Liu Z-Q. Nanocarriers: a general strategy for enhancement of oral bioavailability of poorly absorbed or pre-systemically metabolized drugs. Curr. Drug. Metab. 11:197–207 (2010)CrossRefGoogle Scholar
  49. 49.
    Yue Z-G, Wei W, Lv P-P, Yue H, Wang L-Y, Su Z-G, Ma G-H. Surface charge affects cellular uptake and intracellular trafficking of chitosan-based nanoparticles. Biomacromolecules 12:2440–2446 (2011)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Jeong Bin Min
    • 1
  • Eun Suh Kim
    • 1
  • Ji-Soo Lee
    • 1
  • Hyeon Gyu Lee
    • 1
  1. 1.Department of Food and NutritionHanyang UniversitySeoulRepublic of Korea

Personalised recommendations