Skip to main content
Log in

Separation and identification of bromelain-generated antibacterial peptides from Actinopyga lecanora

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Actinopyga lecanora, as a rich protein source was hydrolysed to generate antibacterial bioactive peptides using different proteolytic enzymes. Bromelain hydrolysate, after 1 h hydrolysis, exhibited the highestantibacterial activities against Pseudomonas aeruginosa, Pseudomonas sp., Escherichia coli and Staphylococcus aureus. Two dimensional fractionation strategies, using a semi-preparative RP-HPLC and an isoelectric-focusing electrophoresis, were applied for peptide profiling. Furthermore, UPLC-QTOF-MS was used for peptides identification; 12 peptide sequences were successfully identified. The antibacterial activity of purified peptides from A. lecanora on P. aeruginosa, Pseudomonas sp., E. coli and S. aureus was investigated. These identified peptides exhibited growth inhibition against P. aeruginosa, Pseudomonas sp., E. coli and S. aureus with values ranging from 18.80 to 75.30%. These results revealed that the A. lecanora would be used as an economical protein source for the production of high value antibacterial bioactive peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sarmadi B, Ismail A, & Hamid, M. Antioxidant and angiotensin converting enzyme (ACE) inhibitory activities of cocoa (Theobroma cacao L.) autolysates. Food Res. Int. 44: 290–296(2011).

    Article  CAS  Google Scholar 

  2. Kim S.-K, & Wijesekara, I. Development and biological activities of marine-derived bioactive peptides: A review. J Funct. Foods. 2: 1–9(2010).

    Article  CAS  Google Scholar 

  3. Hancock R. E. W, & Sahl, H.-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 24: 1551–1557(2006).

  4. Gallo R. L, Murakami M, Ohtake, T, & Zaiou M. Biology and clinical relevance of naturally occurring antimicrobial peptides. J Allergy. Clin. Immunol. 110: 823–831(2002).

    Article  CAS  Google Scholar 

  5. Zhang Y.-x., Zou, A.-h., Manchu, R.-g., Zhou, Y.-c., & Wang, S.-f. Purification and antimicrobial activity of antimicrobial protein from Brown-spotted Grouper, Epinephelus fario. Zool Res. 6627–632(2008).

  6. Shahidi F, & Zhong Y. Bioactive peptides. J. AOAC. Int. 91: 914–931 (2008).

    CAS  Google Scholar 

  7. Ghanbari R, Ebrahimpour A, Abdul-Hamid A, Ismail A, & Saari N. Actinopyga lecanora hydrolysates as natural antibacterial agents. Int J. Mol. Sci. 13: 16796–16811(2012).

  8. Church F C, Swaisgood H E, Porter D H, & Catignani G L. Spectrophotometric assay using o-Phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J Dairy. Sci. 66: 1219–1227(1983).

    Article  CAS  Google Scholar 

  9. Liu Z, Dong S, Xu J, Zeng M, Song H, & Zhao Y. Production of cysteine-rich antimicrobial peptide by digestion of oyster (Crassostrea gigas) with alcalase and bromelin. Food Control. 19: 231–235(2008).

    Article  Google Scholar 

  10. Tang W, Zhang H, Wang L, & Qian H. Antimicrobial peptide isolated from ovalbumin hydrolysate by immobilized liposome-binding extraction. Eur Food. Res. Technol. 1–10(2013).

  11. Nokihara K, Yamamoto R, Hazama M, Wakizawa O, & Nakamura S. Design and applications of a novel simultaneous multiple solid-phase peptide synthesizer, In R. Epton (Ed.) (pp. 445–448). Andover, UK: Intercept Limited(1992).

  12. Nakajima Y, Ishibashi J, Yukuhiro F, Asaoka A, Taylor D, & Yamakawa, M. Antibacterial activity and mechanism of action of tick defensin against Gram-positive bacteria. Biochimicaet Biophysica Acta.1624: 125–130(2003).

  13. Osman A, Goda H, Abdol-Hamid M, Badra S, & Otte, J. Antibacterial peptide generated by alkalase hydrolysis of goat whey. LWT- Food sci. technol. 65: 480–486 (2016).

    Article  CAS  Google Scholar 

  14. Lam H.-T, Josserand J, Lion N, & Girault H H. Modeling the isoelectric focusing of peptides in an OFFGEL multicompartment cell. J. Proteome Res. 6: 1666–1676 (2007).

  15. Hancock, R. E. W. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis. 1: 156–164(2001).

    Article  CAS  Google Scholar 

  16. Dathe M, Nikolenko H, Meyer J, Beyermann M, & Bienert M. Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Letters. 501: 146–150(2001).

    Article  CAS  Google Scholar 

  17. Sila A, Nedjar-Arroume N, Hedhili K, Chataigne G, Balti R, Nasri M, Dhulster P, & Bougatef A, Antibacterial peptides from barbel muscle protein hydrolysates: Activity against some pathogenic bacteria. LWT Food. Sci. Technol. 55: 183–188(2014).

    Article  CAS  Google Scholar 

  18. Jang A, Jo C, Kang K.-S, & Lee M. Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides. Food. Chem. 107: 327–336(2008).

    Article  CAS  Google Scholar 

  19. Fjell C. D, Hiss J, AHancock, R. E. W, & Schneider G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug. Discov.11:3751(2012).

  20. Brogden K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbi. 3: 238–250(2005).

    Article  CAS  Google Scholar 

  21. Hali, N.R.A, Yusof H. M, & Sarbon N.M. Functional and bioactive properties of fish protein hydrolysates and peptides: A comprehensive review. Trends Food. Sci. Technol. (2016).

  22. Hwang C-F, Chen Y-A, Luo C, & Chiang W-D. Antioxidant and antibacterial activities of peptide fractions from flaxseed protein hydrolysed by protease from Bacillus altitudinis HK02. Int Food. Sci. Technol. 51: 681–869 (2016).

    Article  CAS  Google Scholar 

  23. Conlon J. M, Al-Ghaferi N, Abraham B, & Leprince J. r. m. Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents. Methods. 42: 349–357(2007).

    Article  CAS  Google Scholar 

  24. Aissaoui N, Chobert J-M, Haertlé T, Marzouki M-N, & Abidi F. Purification and biochemical characterization of a neutral serine protease from trichoderma harzianum. use in antibacterial peptide production from a fish by-product hydrolysate. Appl. Biochem. Biotechnol. 182: 831–845(2017).

    Article  CAS  Google Scholar 

  25. Dennison S. R, Wallace J, Harris F, & Phoenix D. A. Amphiphilic α-Helical antimicrobial peptides and their structure/function relationships. Protein. Pept. Lett. 12: 31–39 (2005).

    Article  CAS  Google Scholar 

  26. Park C. B, Yi K.-S, MatsuzakiK, Kim M. S, & Kim S. C. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc. Natl. Acad. Sci. 97: 8245–8250 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the Malaysia Ministry of Science, Technology and Innovation (MOSTI) under Project No. 10-05ABI-FB 037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raheleh Ghanbari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari, R., Ebrahimpour, A. Separation and identification of bromelain-generated antibacterial peptides from Actinopyga lecanora . Food Sci Biotechnol 27, 591–598 (2018). https://doi.org/10.1007/s10068-017-0267-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0267-z

Keywords

Navigation