Advertisement

Food Science and Biotechnology

, Volume 27, Issue 2, pp 509–517 | Cite as

Enzyme activity and partial characterization of proteases obtained from Bromelia karatas fruit and compared with Bromelia pinguin proteases

  • Libier Meza-Espinoza
  • María de los Ángeles Vivar-Vera
  • María de Lourdes García-Magaña
  • Sonia G. Sáyago-Ayerdi
  • Alejandra Chacón-López
  • Eduardo M. Becerrea-Verdín
  • Efigenia Montalvo-González
Article

Abstract

The enzymatic activity and partial characterization of proteases from Bromelia karatas fruits were evaluated and compared with Bromelia pinguin proteases. The specific activity increased twofold after partial purification in both proteases. Partially purified proteases from Bromelia karatas showed good specific activity at pH 6.0–8.0 and residual activity of 70–100% for 60 min at 37–60 °C, similar to Bromelia pinguin proteases. The K m value of proteases from Bromelia karatas was higher (253.32 µM) than that of Bromelia pinguin proteases (234.94 µM). The use of specific protease inhibitors indicated the presence of cysteine and serine proteases. Proteases with molecular weight of 66.2–97 and 21–31 kDa were detected. Bromelia karatas proteases registered 73% hydrolysis using a soy protein concentrate, similar to the enzyme activity of Bromelia pinguin proteases and commercial bromelain. These results demonstrate that Bromelia karatas proteases could be a potential alternative protease in the food industry.

Keywords

Bromelia karatas fruit Proteases Enzyme activity Enzyme characterization 

Notes

Acknowledgements

The authors acknowledge Tecnológico Nacional de Mexico (Grant No. 5613.15-P) for funding.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Hornung-Leoni CTH. Bromeliads: traditional plant food in Latin America since prehispanic times. Polibotánica. 32: 219–229 (2011).Google Scholar
  2. 2.
    Montes C, Amador M, Cuevas D, Córdoba F. Subunit structure of karatasin, the proteinase isolated from Bromelia plumier (karatas). Agric. Biol. Chem. 54: 17–24 (1990).CrossRefGoogle Scholar
  3. 3.
    Moyano D, Osorio M, Murillo E, Murillo W, Solanilla J, Méndez J, Aristizabal J. Evaluación de parámetros bromatológicos, fitoquímicos y funcionalidad antioxidante de frutos de Bromelia karatas (Bromeliaceae). Vitae 19: S439–S441 (2012).Google Scholar
  4. 4.
    González-Rábade N, Badillo-Corona JA, Aranda-Barradas JS, del Carmen Oliver-Salvador M. Production of plant proteases in vivo and in vitro—a review. Biotechnol. Adv. 29: 983–996 (2011).CrossRefGoogle Scholar
  5. 5.
    Moreno-Hernández JM, Hernández-Mancillas XD, Navarrete ELC, Mazorra-Manzano MA, Osuna-Ruiz I, Rodríguez-Tirado VA, Salazar-Leyva JA. Partial characterization of the proteolytic properties of an enzymatic extract from “Aguama” Bromelia pinguin L. fruit grown in Mexico. Appl. Biochem. Biotechnol. 182: 181–196 (2017).CrossRefGoogle Scholar
  6. 6.
    Toro-Goyco E, Maretzki A, Matos ML. Isolation, purification, and partial characterization of pinguinain, the proteolytic enzyme from Bromelia pinguin L. Arch. Biochem. Biophys. 126: 91–104 (1968).CrossRefGoogle Scholar
  7. 7.
    Payrol JA, Obregón WD, Natalucci CL, Caffini NO. Reinvestigation of the proteolytically active components of Bromelia pinguin fruit. Fitoterapia 76: 540–548 (2005).CrossRefGoogle Scholar
  8. 8.
    Payrol JA, Obregón WD, Trejo SA, Caffini NO. Purification and characterization of four new cysteine endopeptidases from fruits of Bromelia pinguin L. grown in Cuba. Protein J. 27: 88–96 (2008).CrossRefGoogle Scholar
  9. 9.
    Nam SH, Kim YM, Walsh MK, Yim SH, Eun JB. Functional characterization of purified pear protease and its proteolytic activities with casein and myofibrillar proteins. Food Sci. Biotechnol. 25: 31–39 (2016).CrossRefGoogle Scholar
  10. 10.
    Pardo MF, López LM, Canals F, Avilés FX, Natalucci CL, Caffini NO. Purification of balansain I, an endopeptidase from unripe fruits of Bromelia balansae Mez (Bromeliaceae). J. Agric. Food Chem. 48: 3795–3800 (2000).CrossRefGoogle Scholar
  11. 11.
    Pavan R, Jain S, Kumar A. Properties and therapeutic application of bromelain: a review. Biotechnol. Res. Int. 1: 1–6 (2012).CrossRefGoogle Scholar
  12. 12.
    Pardo MF, López LM, Caffini NO, Natalucci CL. Properties of a milk clotting protease isolated from fruits of Bromelia balansae Mez. Biol. Chem. 382: 871–874 (2001).CrossRefGoogle Scholar
  13. 13.
    López LM, Sequeiros C, Natalucci CL, Brullo A, Maras B, Barra D, Caffini NO. Purification and characterization of macrodontain I, a cysteine peptidase from unripe fruits of Pseudananas macrodontes (Morr.) Harms (Bromeliaceae). Protein Expr. Purif. 18: 133–140 (2000).CrossRefGoogle Scholar
  14. 14.
    Vallés D, Furtado S, Cantera A. Characterization of news proteolytic enzymes from ripe fruits of Bromelia antiacantha Bertol.(Bromeliaceae). Enzyme Microb. Technol. 40: 409–413 (2007).CrossRefGoogle Scholar
  15. 15.
    Singh LR, Devi TP, Devi SK. Purification and characterization of a pineapple crown leaf thiol protease. Prep. Biochem. Biotechnol. 34: 25–43 (2004).CrossRefGoogle Scholar
  16. 16.
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254 (1976).CrossRefGoogle Scholar
  17. 17.
    Natalucci CL, Brullo A, López LMI, Hilal RM, Caffini NO. Macrodontain, a new protease isolated from fruits of Pseudananas macrodontes (Morr.) Harms (Bromeliaceae). J. Food Biochem. 19: 443–454 (1996).CrossRefGoogle Scholar
  18. 18.
    Lineweaver H, Burk D. The determination of enzyme dissociation constants. J. Am. Chem. Soc. 56: 658–666 (1934).CrossRefGoogle Scholar
  19. 19.
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685 (1970).CrossRefGoogle Scholar
  20. 20.
    Kim SY, Park PW, Rhee KC. Functional properties of proteolytic enzyme modified soy protein isolate. J. Agric. Food Chem. 38: 651–656 (1990).CrossRefGoogle Scholar
  21. 21.
    Hernández M, Chávez M, Márquez M, Rodríguez G, Santos R, González J, Carvajal C. Proceso de obtención de bromelina a partir de tallos de piña. Cubane Patent C12 N 9/50, Dic 23. (1997).Google Scholar
  22. 22.
    Headon DR, Walsh G. The industrial production of enzymes. Biotechnol. Adv. 12: 635–646 (1994).CrossRefGoogle Scholar
  23. 23.
    Andrade de MJ, Toledo TT, Nogueira SB, Cordenunsi BR, Lajolo FM, do Nascimento JRO. 2D-DIGE analysis of mango (Mangifera indica L.) fruit reveals major proteomic changes associated with ripening. J. Proteomics 75: 3331–3341 (2012).CrossRefGoogle Scholar
  24. 24.
    Bruno MA, Pardo MF, Caffini NO, Lopez LM. Purification of a new endopeptidase isolated from fruits of Bromelia hieronymi Mez (Bromeliaceae). Acta Farm. Bonaerense 21: 51–56 (2002).Google Scholar
  25. 25.
    Bruno MA, Trejo SA, Aviles XF, Caffini NO, Lopez LM. Isolation and characterization of hieronymain II, another peptidase isolated from fruits of Bromelia hieronymi Mez (Bromeliaceae). Protein J. 25: 224–231 (2006).CrossRefGoogle Scholar
  26. 26.
    Corzo CA, Waliszewski KN, Welti-Chanes J. Pineapple fruit bromelain affinity to different protein substrates. Food Chem. 133: 631–635 (2012).CrossRefGoogle Scholar
  27. 27.
    Bruno MA, Trejo SA, Caffini NO, López LM. Purification and characterization of hieronymain III. Comparison with other proteases previously isolated from Bromelia hieronymi Mez. Protein J. 27: 426–433 (2008).CrossRefGoogle Scholar
  28. 28.
    Pérez A, Carvajal C, Trejo S, Torres MJ, Martin MI, Lorenzo JC, Natalucci CL, Hernández M. Penduliflorain I: a cysteine protease isolated from Hohenbergia penduliflora (A.Rich.) Mez (Bromeliaceae). Protein J. 29: 225–233 (2010).CrossRefGoogle Scholar
  29. 29.
    Singh VK, Patel AK, Moir AJ, Jagannadham MV. Indicain, a dimeric serine protease from Morus indica cv. K2. Phytochemistry 69: 2110–2119 (2008).CrossRefGoogle Scholar
  30. 30.
    Arthur J, Mikles L. Calpain zymography with casein or fluorescein isothiocyanate casein. Methods Mol. Biol. 144: 109–116 (2000).Google Scholar
  31. 31.
    Vioque J, Sánchez-Vioque R, Clemente A, Pedroche J, Millán F. Partially hydrolyzed rapeseed protein isolates with improved functional properties. J. Am. Oil Chem. Soc. 77: 447–450 (2000).CrossRefGoogle Scholar
  32. 32.
    Vioque J, Predoche J, Yust MM, Lqari H, Megías C, Girón-Calle J, Aliaz M, Millán F. Peptídeos bioativos em proteínas vegetais de reserva. Brazilian J. Food Tech. 3: 99–102 (2006).Google Scholar
  33. 33.
    Oseguera-Toledo ME, de Mejia EG, Amaya-Llano SL. Hard-to-cook bean (Phaseolus vulgaris L.) proteins hydrolyzed by alcalase and bromelain produced bioactive peptide fractions that inhibit targets of type-2 diabetes and oxidative stress. Food Res. Int. 76: 839–851 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Libier Meza-Espinoza
    • 1
  • María de los Ángeles Vivar-Vera
    • 2
  • María de Lourdes García-Magaña
    • 1
  • Sonia G. Sáyago-Ayerdi
    • 1
  • Alejandra Chacón-López
    • 1
  • Eduardo M. Becerrea-Verdín
    • 3
  • Efigenia Montalvo-González
    • 1
  1. 1.Laboratorio Integral de Investigación en AlimentosInstituto Tecnológico de TepicTepicMexico
  2. 2.Instituto Tecnológico de TuxtepecTuxtepecMexico
  3. 3.Unidad Académica de Ciencias Químicas Biológicas y FarmacéuticasUniversidad Autónoma de NayaritTepicMexico

Personalised recommendations