Food Science and Biotechnology

, Volume 26, Issue 1, pp 279–285 | Cite as

Dietary hydroxycinnamates prevent oxidative damages to liver, spleen, and bone marrow cells in irradiation-exposed mice

  • Sung-Ho Kook
  • Sa-Ra Cheon
  • Jae-Hwan Kim
  • Ki-Choon Choi
  • Min-Kook Kim
  • Jeong-Chae Lee


Dietary hydroxycinnamates are considered as attractive materials for radioprotection. This study explores whether hydroxycinnamates protect against γ-radiation-induced cellular damages and hematopoietic stem cell senescence. C57BL/6 mice were orally administered with each of caffeic acid, p-coumaric acid, and ferulic acid (20mg/kg body weight) once per three days for five times before exposure to total body radiation (5 Gy). Irradiation increased the activities of alanine amino transaminase and aspartate aminotransferase in blood serum but decreased the anti-oxidant defense enzyme activities in the liver and spleen tissues. Oral administration of the compounds almost completely prevented irradiation-mediated changes in these enzyme activities. The hydroxycinnamates also inhibited the irradiation-mediated increases in the mitochondrial superoxide anions of LinSca-1+c-Kit+ (LSK) cells and CD150+CD48 LSK cells in the bone marrow. These results suggest that dietary hydroxycinnamates protect against irradiation-mediated oxidative damages of tissues and bone marrow progenitor cells.


total body irradiation reactive oxygen species bone marrow radioprotection phenolic compounds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Weiss JF. Pharmacologic approaches to protection against radiation-induced lethality and other damage. Environ. Health Persp. 105(Suppl 6): 1473–1478 (1997)CrossRefGoogle Scholar
  2. 2.
    Schultze-Mosgau S, Lehner B, Rödel F, Wehrhan F, Amann K, Kopp J, Thorwarth M, Nkenke E, Grabenbauer G. Expression of bone morphogenetic protein 2/4, transforming growth factor-beta1, and bone matrix protein expression in healing area between vascular tibia grafts and irradiated boneexperimental model of osteonecrosis. Int. J. Radiat. Oncol. 61: 1189–1196 (2005)CrossRefGoogle Scholar
  3. 3.
    Kang KA, Zhang R, Lee KH, Chea S, Kim BJ, Kwak YS, Park JW, Lee NH, Hyun JW. Protective effect of triphlorethol-A from Ecklonia cava against ionizing radiation in vitro. J. Radiat. Res. 47: 61–68 (2006)CrossRefGoogle Scholar
  4. 4.
    Kovacs E, Keresztes A. Effect of gamma and UV-B/C radiation on plant cells. Micron 33: 199–210 (2002)CrossRefGoogle Scholar
  5. 5.
    Arora R, Gupta D, Chawla R, Sagar R, Sharma A, Kumar R, Prasad J, Singh S, Samanta N, Sharma RK. Radioprotection by plant products: Present status and future prospects. Phytother. Res. 19: 1–22 (2005)CrossRefGoogle Scholar
  6. 6.
    Chua HL, Plett PA, Sampson CH, Joshi M, Tabbey R, Katz BP, MacVittie TJ, Orschell CM. Long-term hematopoietic stem cell damage in a murine model of the hematopoietic syndrome of the acute radiation syndrome. Health Phys. 103: 356–366 (2012)CrossRefGoogle Scholar
  7. 7.
    Chang J, Feng W, Wang Y, Luo Y, Allen AR, Koturbash I, Turner J, Stewart B, Raber J, Hauer-Jensen M, Zhou D, Shao L. Total-body proton irradiation causes long-term damage to hematopoietic stem cells in mice. J. Radiat. Res. 183: 240–248 (2015)CrossRefGoogle Scholar
  8. 8.
    Wang Y, Schulte BA, La Rue AC, Ogawa M, Zhou D. Total body irradiation selectively induces murine hematopoietic stem cell senescence. Blood 107: 356–366 (2006)Google Scholar
  9. 9.
    Shao L, Feng W, Li H, Gardner D, Luo Y, Wang Y, Liu L, Meng A, Sharpless NE, Zhou D. Total body irradiation causes long-term mouse BM injury via induction of HSC premature senescence in anlnka-and Arf-independent manner. Blood 123: 3105–3115 (2014)CrossRefGoogle Scholar
  10. 10.
    Zhang R, Kang KA, Kang SS, Park JW, Hyun JW. Morin (2’,3,4’,5,7-pentahydroxyflabone) protected cells against radiation-induced oxidative stress. Basic Clin. Pharmacol. 108: 63–72 (2011)CrossRefGoogle Scholar
  11. 11.
    Mathew S, Abraham TE. Bioconversions of ferulic acid, a hydroxycinnamic acid. Crit. Rev. Microbiol. 32: 115–125 (2006)CrossRefGoogle Scholar
  12. 12.
    Masuda T, Ellsworth PC, Mesquita B, Leu J, Tanida S, Van de Veerodonk E. Placing the face in context: Cultural difference in the perception of facial emotion. J. Pers. Soc. Psychol. 94: 365–381 (2008)CrossRefGoogle Scholar
  13. 13.
    Song IH, Poddubnyy DA, Rudwaleit M, Sieper J. Benefits and risks of ankylosing spondylitis treatment with nonsteroidal anti-inflammatory drugs. Arthritis Rheum. 58: 929–938 (2008)CrossRefGoogle Scholar
  14. 14.
    Hudson EA, Dinh PA, Kokubun T, Simmonds MS, Gescher A. Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. Cancer Epidem. Biomar. 9: 1167–1170 (2000)Google Scholar
  15. 15.
    Ma ZC, Hong Q, Wang YG, Tan HL, Xiao CR, Liang QD, Gao Y. Ferulic acid protects lymphocytes from radiation-predisposed oxidative stress through extracellular regulated kinase. Int. J. Radiat. Biol. 87: 130–140 (2011)CrossRefGoogle Scholar
  16. 16.
    Piazzon A, Vrhovsek U, Masuero D, Mattivi F, Mandoi F, Nardini M. Antioxidant activity of phenolic acids and their metabolites: Synthesis and antioxidant properties of the sulfate derivatives of ferulic and caffeic acids and of the acyl glucuronide of ferulic acid. J. Agr. Food Chem. 90: 12312–12323 (2012)CrossRefGoogle Scholar
  17. 17.
    Das U, Manna K, Sinha M, Datta S, Da DK, Chakraborty A, Ghosh M, Saha KD, Dey S. Role of ferulic acid in the amelioration of ionizing radiation induced inflammation: A murine model. PLoS ONE 9: e97599 (2014)CrossRefGoogle Scholar
  18. 18.
    Islam MS, Nagasaka R, Ohara K, Hosoya T, Ozaki H, Ushio H, Hori M. Biological abilities of rice bran-derived antioxidant phytochemicals for medical therapy. Curr. Top. Med. Chem. 11: 1847–1853 (2011)CrossRefGoogle Scholar
  19. 19.
    Baliga MS, Haniadka R, Pereira MM, Thilakchand KR, Rao S, Arora R. Radioprotective effects of Zingiber officinale Roscoe (ginger): Past, present and future. Food Funct. 3: 714–723 (2012)CrossRefGoogle Scholar
  20. 20.
    Nagiev ER, Karpovich GA. Activity of alanine-and aspartate-aminotransferases of organs of albino rats subjected to total body gamma-radiation and physical exercise. Radiats. Biol. Radioecol. 34: 639–644 (1994)Google Scholar
  21. 21.
    Hosseinimehr SJ, Azadbakht M, Mousavi SM, Mahmoudzadeh A, Akhlaghpoor S. Radioprotective effects of hawthorn fruit extract against gamma irradiation in mouse bone marrow cells. J. Radiat. Res. 48: 63–68 (2007)CrossRefGoogle Scholar
  22. 22.
    Kim SB, Pandita RK, Eskiocak U, Ly P, Kaisani A, Kumar R, Cornelius C, Wright WE, Pandita TK, Shay JW. Targeting of Nrf2 induces DNA damage signaling and protects colonic epithelial cells from ionizing radiation. P. Natl. Acad. Sci. USA 109: E2949–E2955 (2012)CrossRefGoogle Scholar
  23. 23.
    Kim KA, Kook SH, Song JH, Lee JC. A phenolic acid phenethyl urea derivative protects against irradiation-induced osteoblast damage by modulating intracellular redox state. J. Cell. Biochem. 115: 1877–1887 (2014)Google Scholar
  24. 24.
    Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J. Nutr. 130: 2073S–2085S (2000)Google Scholar
  25. 25.
    Kim SS, Son YO, Chun JC, Kim SE, Chung GH, Hwang KJ, Lee JC. Antioxidant property of an active compound purified from the leaves of paraquat-tolerant Rehmannia glutonosa. Redox Rep. 10: 311–318 (2005)CrossRefGoogle Scholar
  26. 26.
    King AD, Griffith JF, Abrigo JM, Leung SF, Yau FK, Tse GM, Ahuja AT. Osteoradionecrosis of the upper cervical spine: MR imaging following radiotherapy for nasopharyngeal carcinoma. Eur. J. Radiol. 73: 629–635 (2010)CrossRefGoogle Scholar
  27. 27.
    Rana T, Schultz MA, Freeman ML, Biswas S. Loss of Nrf2 accelerates ionizing radiation-induced bone loss by upregulating RANKL. Free Radical Bio. Med. 53: 2298–2307 (2012)CrossRefGoogle Scholar
  28. 28.
    Singh PK, Wise SY, Ducey EJ, Fatanmi OO, Elliott TB, Singh VK. a-Tocopherol succinate protects mice against radiation-induced gastrointestinal injury. J. Radiat. Res. 177: 133–145 (2012)CrossRefGoogle Scholar
  29. 29.
    Shimoi K, Masuda S, Shen B, Furugori M, Kinae N. Radioprotective effects of antioxidative plant flavonoids in mice. Mutat. Res. 350: 153–161 (1996)CrossRefGoogle Scholar
  30. 30.
    Shanthakumar J, Karthikeyan A, Bandugula VR, Rajendra Prasad N. Ferulic acid, a dietary phenolic acid, modulates radiation effects in Swiss albino mice. Eur. J. Pharmacol. 691: 268–274 (2012)CrossRefGoogle Scholar
  31. 31.
    Cinkilic N, Cetintas SK, Zorlu T, Vatan O, Yilmaz D, Cavas T, Tunc S, Ozkan L, Bilaloglu R. Radioprotection by two phenolic compounds: Chlorogenic and quinic acid, on X-ray induced DNA damage in human blood lymphocytes in vitro. Food Chem. Toxicol. 53: 359–363 (2013)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Sung-Ho Kook
    • 1
    • 2
  • Sa-Ra Cheon
    • 2
  • Jae-Hwan Kim
    • 3
  • Ki-Choon Choi
    • 4
  • Min-Kook Kim
    • 1
  • Jeong-Chae Lee
    • 1
    • 2
  1. 1.Cluster for Craniofacial Development & Regeneration Research, Institute of Oral Biosciences and School of DentistryChonbuk National UniversityJeonju, JeonbukKorea
  2. 2.Department of Bioactive Material Sciences and Research Center of Bioactives MaterialsChonbuk National UniversityJeonju, JeonbukKorea
  3. 3.Chonnam National University Dental HospitalKwangjuKorea
  4. 4.Grassland and Forages Research CenterNational Institute of Animal ScienceCheonan, ChungnamKorea

Personalised recommendations